

µC3/Compact USERS GUIDE

5th Edition eForce Co., Ltd.

μC3/Compact Users Guide

2
Copyright © eForce Co.,Ltd. All Rights Reserved

Introduction

 µC3(Micro C cube)is a RTOS(Real Time Operating System)with kernel in accordance with

specification of µITRON4.0, which is specified by TRON Association Corporation as Open Real

Time kernel, in core.

The C3 of µC3 describes 3 concepts of Compact , Connectivity, Capability. Besides, the

name of cube shows possibility of generating 3 effects by the concept above.

The position of this Document

 This document is used as common manual for kernel function of µC3/Compact. However,

another manual will be used for middle-ware or kernel function existing in each CPU. In case of

necessity, please refer to these manuals. And, Have different functions depending on the

version of the specification. Description of this case, the old kernel version is described as

"Ver.1.x kernel", and the old configurator version is described as "Ver.2.x configurator".

TRON is abbreviation of "The Real-time Operation system Nucleus".

µITRON is abbreviation of "Micro Industrial TRON".

Specification of µITRON4.0 is available in homepage of TRON

Association(http://www.assoc.tron.org/).

µC3 is a registered trademark of eForce Co., Ltd.

The contents of this document may be changed without prior notice.

Introduction

3
Copyright © eForce Co.,Ltd. All Rights Reserved

Revision History

Modified items in 2
nd

 Edition

Page Content

 Changed layout

Modified items in 3
rd

 Edition

Page Content

 Changed layout

32 Added explanation regarding to selection of CPU

32,34,35,37,39,

41,42,4445,46,

47,49,50,52

Changed images together with version-up of configurator

35,37,39 Changed “Common part of kernel” to “Common kernel”

37 Changed explanation of Common kernel

Modified items in 4
th

 Edition

Page Content

23 Modified description of resource "Acquisition and return" of semaphore

28 Added explanation of System time update and Time unit used at kernel,

Change Timing for, time-out

116 Corrected type name of parameter of COM port initialization function

123 Corrected “Receiving one character” to “Receiving character string” in

title of Standard COM port driver system call

125,126 Modified “Time unit is mounting dependence” to “Time unit is 1

mili-second” in explanation of data type “TMO” “RELTIM” “SYSTIM”

Modified items in 5
th

 Edition

Page Content

60-95 Added a explanation of Version3 or later Configurator.

μC3/Compact Users Guide

4
Copyright © eForce Co.,Ltd. All Rights Reserved

Table of Content

Introduction .. 1

Table of Content ... 4

Chapter 1 What is µC3/Compact? .. 7

1．1 Features ... 7

1．2 Position in specification of µITRON ... 7

1．3 Development process .. 8

Chapter 2 Basic concept of µC3/Compact .. 10

2．2 Glossary of basic terms .. 10

2．1．1 Task ... 10

2．1．2 Dispatch and Scheduling .. 10

2．1．3 Context .. 10

2．1．4 Object and ID number ... 10

2．1．5 Service Call and System Call ... 11

2．1．6 Priority order and priority level .. 11

2．1．7 Restricted Tasks .. 11

2．1．8 Shared Stack ... 11

2．1．9 Preemptive .. 11

2．1．10 Time Tick ... 11

2．1．11 Queuing... 12

2．1．12 Queue ... 12

2．2 Task States and Scheduling Rule .. 13

2．2．１ Task States .. 13

2．2．2 Scheduling Rules .. 15

CHAPTER 3 Function Outline of µC3/Compact ... 16

3．1 Context and System status .. 16

3．1．1 Process Unit and Context ... 16

3．1．2 Task Context and Non-Task Context .. 16

3．1．3 CPU Lock Status ... 16

3．1．4 Dispatching Disabled State ... 17

3．1．5 Idle status .. 17

3．1．6 Task State during Dispatch Pending State ... 18

3．2 Shared Stack .. 19

3．2．1 Method of using attribute of Restricted Task .. 19

Table of Content

5
Copyright © eForce Co.,Ltd. All Rights Reserved

3．2．2 Method of using Stack Release Waiting status .. 19

3．3 Configurator .. 20

3．3．1 Configuration information of common kernel .. 20

3．3．2 Configuration Information of Kernel Objects ... 20

3．3．3 Generated source code .. 21

3．4 Task Management Functions ... 21

3．5 Task Dependent Synchronous Functions .. 23

3．6 Synchronization and Communication Functions .. 24

3．6．1 Semaphore .. 24

3．6．2 Eventflags.. 24

3．6．3 Data Queues ... 25

3．6．4 Mailboxes .. 26

3．7 Memory Pool Management Functions ... 27

3．7．1 Fixed-Sized Memory Pools ... 27

3．8 Time Management Functions ... 28

3．8．1 System Time Management ... 28

3．8．2 Cyclic Handlers ... 28

3．9 System State Management Functions ... 30

3．10 Interrupt Management Functions ... 31

3．11 System Configuration Management Functions .. 32

CHAPTER 4 Usage of Configurator .. 33

4．1 Operation of the configurator : "Ver.2.x configurator" .. 33

4．1．1 Starting up Configurator .. 33

4．1．2 Set-up kernel ... 37

4．1．3 Saving project file .. 53

4．1．4 Generate source ... 55

4．1．5 Error check when creating source .. 57

4．2 Operation of the configurator : Current Version ... 58

4．2．1 Starting up Configurator .. 58

4．2．2 Set-up kernel ... 62

4．2．3 Saving project file .. 88

4．2．4 Generate source ... 90

4．2．5 Error check when creating source .. 92

CHAPTER 5 Explanation of System Call .. 94

5．1 Task Management Functions ... 94

5．2 Task Dependent Synchronization Functions .. 105

5．3 Synchronization and Communication Functions .. 110

μC3/Compact Users Guide

6
Copyright © eForce Co.,Ltd. All Rights Reserved

5．3．1 Semaphores .. 110

5．3．2 Eventflags .. 114

5．3．3 Data Queues ... 119

5．3．4 Mailboxes .. 125

5．4 Memory Pool Management Functions ... 129

5．4．1 Fixed-Sized Memory Pools ... 129

5．5 Time Management Functions ... 133

5．5．1 System Time Management ... 133

5．5．2 Cyclic Handlers ... 136

5．6 System State Management Functions ... 140

5．7 Interrupt Management Functions ... 151

5．8 System Configuration Management Functions .. 153

CHAPTER 6 Explanation of standard COM port driver .. 155

6．1 Outline of standard COM port driver .. 155

6．2 Service call of standard COM port driver ... 156

CHAPTER 7 Appendix .. 165

7．1 Data type .. 165

7．2 Form of packet ... 167

7．3 Constant and macro ... 170

7．4 Composition constant and macro .. 172

7．5 List of Error Code ... 173

7．6 List of System Call.. 174

Index .. 177

Chapter 1 What is μC3/Compact?

7
Copyright © eForce Co.,Ltd. All Rights Reserved

Chapter 1 What is µC3/Compact?

1．1 Features

µC3/Compact is a product specialized in Compact in three concepts of µC3 to suppress

memory consumption occupied in RTOS, especially, the consumption of RAM to the utmost

limit. In other words, it is a product with concepts of saving memory only for build-in ROM/RAM,

which is called one-chip microcontroller, as well as being able to be used for system which

hesitate to adopt RTOS.

Only by generating objects statically, code size is suppressed, and management data

arranged in RAM area is optimized and decreased. Besides, static API is not adopted,

configurator of GUI method is used, necessary configuration data can be efficiently converted

into management data, and the consumption memory is suppressed.

When designing application program using RTOS, though the allocated stack area of each

task tends to make RAM area stringent, it supports to shared stack to mitigate the drawbacks

mentioned above..

1．2 Position in specification of µITRON

Though there is outline of profile in specification of µITRON4.0, µC3/Compact is being

deviated from any profile. However, when defining development concept for µC3/Compact, a

car control profile which is lower than a basic profile has been assumed to be basic.

 Full set

 Standard profile

 Basic profile

 Car control profile

 Minimum set

Position ofμC3/Compact

μC3/Compact Users Guide

8
Copyright © eForce Co.,Ltd. All Rights Reserved

As a specification that deviates from the car control profile, it is enumerated that there is not

either CPU exception handler or static API because of the adoption of configurator of GUI

method. In contrary, there are following supporting functions though they are not indispensable.

・System call with time-out

・Mailbox(The order of the message priority is non-supported)

・Fixed-Sized memory pool

1．3 Development process

The following figure shows development process of system using µC3/Compact.

At first, input configuration information (number or attribute of necessary objects) of

RTOS,which has been decided in system design, to configurator. Configurator generates code

based on configuration information. In the generated code, there are skeleton code and file

used without modification. This skeleton code is created to assist to describe necessary

application program.

After describing application program, build (compile/link) and generate load module. Debug

this load module, and write it to ROM or Flash memory to complete system when finishing

debug. Moreover, in case there is some error in configuration of RTOS, retart configurator and

start over again from configuration.

It is prohibited to modify and use file other than the skeleton code.

Chapter 1 What is μC3/Compact?

9
Copyright © eForce Co.,Ltd. All Rights Reserved

Development Process Figure

【Recommendation】

The configurator outputs skeleton code according to the code generation. Therefore, in case of

directly editing skeleton code, it will be overwrited by the code generation due to change in

configuration. In order to prevent from overwriting, it is recommended not to directly edit

skeleton code but use template to create application program.

Input configuration information
based on design

 Configurator

Skeleton code
・Configuration file
・Device driver source file

・Exception vector table

・Exception Handler source
 file
・Kernel Library

Etc.

 Edited by user

Debugger

 Application source

 Build

 （Compile/Link）

 ROM or Flash Memory

 Load Module

Together with changing
configuration

 In case of changing application source only

Standard library

μC3/Compact Users Guide

10
Copyright © eForce Co.,Ltd. All Rights Reserved

Chapter 2 Basic concept of µC3/Compact

2．2 Glossary of basic terms

2．1．1 Task

A unit of a concurrent processing program is called "Task". In other words, multiple tasks are

executed concurrently when seen from an application’s point of view. In fact, concurrent

program that is the number of processor, a kernel make it seem like concurrent processing by

using time-sharing techniques following the scheduling rules. The task that invokes a system

call is called the “invoking task” .

2．1．2 Dispatch and Scheduling

The act of switching the currently executing task on a processor with another, non-executing

task is called "Dispatching". The mechanism in the kernel that performs dispatching is called

the "Dispatcher".

The process that determines which task is to be executed next is called "Scheduling". The

mechanism in the kernel that executes scheduling is called the "Scheduler".

Generally, Dispatcher and Scheduler is hardly separated in definition. In µC3, they are

integrated and called “Dispatcher” and “Dispatch”.

2．1．3 Context

The environment for program execution is called “Context”, and each task, time event

handler or interrupt handler is considered to have its own context. In case of switching from one

context to another, it is general to use context as a register value of processor because data

necessary to restart must be saved and be retrieved.

2．1．4 Object and ID number

The resources on which a kernel or a software component operates are generally referred to

as Object, the numbers which are used to identify and distinguish objects are called ID Number.

In µC3/Compact, configurator assign ID number, so that the system call is called out by using

definition name of the identification number (macro name) in application. ID number of Object

consist Object name + ID, such as Task ID, Semaphore ID.

Kernel objects include tasks, semaphores, Eventflags, Mailboxes Fixed-Sized memory pools,

data queue, cyclic handlers, interrupt service routines and shared stacks. However, because

there is no system call for reference, interrupt service routine has no ID number.

Chapter 2 Basic concept of μC3/Compact

11
Copyright © eForce Co.,Ltd. All Rights Reserved

2．1．5 Service Call and System Call

The interface which invokes kernel or software component from application is called Service

Call. In µC3, the Service Call of the kernel is called a System Call.

2．1．6 Priority order and priority level

The order relation decide the order of executing process, it is called “Priority order”, and

parameter which is given by application for that process execution is called “Priority level” .

Priority Level is displayed by numerical value (natural number), the less the value is, the bigger

the Priority Level is, and vice versa.

In Priority Level of Task, there are Base Priority Level and Current Priority Level. In

µC3/Compact, because Mutex is not implemented, the Base Priority Level and Current Priority

Level will generally become the same Priority Level.

2．1．7 Restricted Tasks

By restricting some functionalitie of tasks by the task attribute, a restricted task can use a

shared stack. A restricted task can not enter the WAITING state and the priority of a restricted

task cannot be changed. Besides, it does not mean that if restricted task then shared stack

must be used, even not using shared stack, there is still attribute of restriced task. However, if

several restricted task want to share the same stack area, they need to have the same task

priority.

2．1．8 Shared Stack

In case various tasks use the same stack space in the system with a little RAM area, that

stack is called “Shared Stack”. In µC3/Compact, method of using restricted task difined by Car

Control Profile and method for exclusively controlling of the kernel are prepared in order to be

able to use shared stack safely.

2．1．9 Preemptive

If a task which has priority higher than the running task becomes ready, be able to dispatched,

it is called “Preemptive”.

2．1．10 Time Tick

System time is controlled in kernel. The event at constant period for counting system time is

called “Time Tick”. In other words, if a cycle of time tick is 1mm second, accuracy of system

time is 1mm second and if it is a cycle of 2mm second, its accuracy is 2mm second.

μC3/Compact Users Guide

12
Copyright © eForce Co.,Ltd. All Rights Reserved

2．1．11 Queuing

The maintaining function in case that there is some process requirement but it is not able to

execute immediately is called “Queuing”, integrated as the counter to count the number of

requires. In Queuing, there are activation request queuing and wakeup request queuing.

2．1．12 Queue

In case there is some required system call from a certain object, but the process is not able to

be executed immediately, there will be system call which can wait till the process is executed or

wait in a permitted time. In this kind of system call, it is queuing by the call of system call, and

sequentially processed from the earliest one. This function is called “Queue”. Though there is

task’s order in Queue, it does not support in µC3/Compact.

Chapter 2 Basic concept of μC3/Compact

13
Copyright © eForce Co.,Ltd. All Rights Reserved

2．2 Task States and Scheduling Rule

2．2．１ Task States

In µC3/Compact, task states are classified into 4 broad categories. The blocked state

category can be further broken down into 2 sub-states. The RUNNING state and the READY

state are both generically referred to as the runnable state“.

Task state transitions is shown in the following Figure:

Figure of Task State Transitions

Wait
Release

Wait

Dispatch

Terminate Forcibly terminate

Activate

Forcibly terminate

Shared Stack in use

Shared Stack
Release

Forcibly terminate

Preempt

Waiting state
WAITTING

Possibility of
executing state

READY

Executing state

RUNNING

Dormant status
DORMANT

Release Stack
Waiting status

STACK-WAITING

μC3/Compact Users Guide

14
Copyright © eForce Co.,Ltd. All Rights Reserved

A RUNNING state

This state is when the task is currently executing. At the same time, only one task At the

present, for status of execution, number of tasks changing to this executing status is up to

one at the same time. Scheduler will decide from Task of possibility of executing status, and it

will change to execution status based on Dispatcher. In other words, there is no change in the

task of executing status even when changing into non-task context while executing the task.

B READY state

It is a state that though task is ready to excute but it is not being executed for some reason.

In other words, it is the case of high Priority Order task which is in execution and the case when

dispatch dose not happen. “The status of dispatching does not occur“ in µC3 means

dispatching disabled state and interrupt mask which are raised more than the task level.

C Blocked state

In a status of waiting for some conditions, context of the task is stored in management area

of the task so that it is possible to restart. In the status of waiting of wide sense, there are

Waiting status and Shared Stack Release Waiting status.

C．1 WAITING state

It is a status when an execution is interrupted due to no condition from system call. In details,

there are Wake-up waiting, Time-passing waiting, Eventflag waiting, Semaphore waiting,

Mailbox-message-receiving waiting, Data Queues-message-receiving/sending waiting, and

Fixed-Sized-memory-block acquisition waiting.

C．2 STACK-WAITING state

It is a status of waiting for releasing Shared Stack when it is in occupancy status depending

on other tasks. Also, the status of releasing Shared Stack is different from waiting status, there

is no release for Shared Stack release waiting in system call.

D DORMANT state

It is the status before the task is starting up or after the task ended. When it is in dormant

status, information of executing status will not be saved. When it changes from dormant status

to starting-up, execution will be starting from starting-up number of tasks.

Chapter 2 Basic concept of μC3/Compact

15
Copyright © eForce Co.,Ltd. All Rights Reserved

2．2．2 Scheduling Rules

The preemptive priority-based scheduling is conducted based on the priorities assigned to

tasks. If more than one runnable task exists, the highest precedence task will be in the

RUNNING state. However, when the system is in a state where dispatching does not occur, the

switch of the task in the RUNNING state will wait until dispatching is allowed.

The task in highest precedence is the one of highest Priority Level, and if there are a number

of tasks with the same priority, it is the task in runnable state early. This relation is shown in the

following chart. However, there might be change of Priority Order in tasks of the same Priority

Level based on the call of system call (chg_pri,rot_rdq).

 Before After

 High

 Precedence

 High

 Priority

 Low

 Low

Precedence between Tasks

Became status of possible execution

Task A Task B

Task D Task C Task E

Task F

μC3/Compact Users Guide

16
Copyright © eForce Co.,Ltd. All Rights Reserved

CHAPTER 3 Function Outline of µC3/Compact

3．1 Context and System status

3．1．1 Process Unit and Context

Kernel of µC3/Compact is executed by the following process unit.

A. Interrupt handler

A.1 Interrupt service routine

B. Time Event Handler

C. Task

D. Idle

In µC3/Compact, interrupt handler is used only in the kernel, and interrupt process is

described in Interrupt service routine.

Time Event Handler will only implement cyclic handler by processing activate based on time.

3．1．2 Task Context and Non-Task Context

The context which is a part of processing of the task is called Task Context and oppositely it

is called Non-Task Context. In Non-Task Context, there are Interrupt service routine, Time

event handler and Context executed by Idle.

In µC3/Compact, it is distinguishing System Call from Task Context, System Call from

Interrupt Service Routine and System Call from Time Event Handler. It is impossible to call

System Call from Idle. It is also impossible to use parameter or System Call specifying local

task from Non-Task Context. Besides, system call with possibility of making task in waiting

status in the wide sense cannot be called.

3．1．3 CPU Lock Status

In system status, there is status of either CPU Lock or CPU Unlock. In the status of CPU

Lock, except the non-kernel interrupts, all other interrupts are prohibitted and dispatch is not

happening. Moreover, in order to prohibit interrupt, starting-up of Time Event Handler is also

reserved.

When it changes to status of locking CPU, it is called “Lock CPU”, and when it changes to

status of unlock CPU, it is called “Unlock CPU . In detail, process of Lock CPU and Unlock CPU

or status right after starting Interrupt Service Routine will be different depending on processor,

please refer to “Processor dependence part Manual” for more explanation.

In case a System Call, which is possible to change to Waiting status of wide sense, is called

in CPU Lock status, it is returned to E_CTX error. If CPU Lock is in realse status right after

Chapter 2 Basic concept of μC3/Compact

17
Copyright © eForce Co.,Ltd. All Rights Reserved

starting execution of Time Event Handler and it is in CPU Lock status in application, then it is

required that CPU Lock be in release status before returning from Handler.

CPU Lock will be in release status right after executing Task. Application is required to make

CPU Lock in release status before ending local Task. Interrupt might be permitted even when

CPU lock is in release status. That relation is different to processor, so please refer to

“Processor dependence part Manual” for more explanation.

3．1．4 Dispatching Disabled State

System status will be either Dispatch Pended status or Dispatch permitted status. Dispatch is

not happening in Dispatch Pended status.

When changing to Dispatch Prohibited status, it is called “Prohibit Dispatch” , and when

changing to Dispatch Permitted status, it is called “Permit Dispatch” .

In Dispatch Prohibited status, when System Call, which is possible to make local task called

from Task Context to Waiting status of wide sense, is called, it will return to E_CTX error. Also, it

is not limited that System Call can be called from non-task context even in Dispatch Prohibited

status.

Execution of Interrupt Service Routine, Time Event Handler gives no effect to Dispatch

Prohibited/ Dispatch Permitted status. And Dispatch Prohibited/ Dispatch Permitted status of

Task Context executing before will be still saved right after starting execution of these

Handler/Routine. Besides, when System Call, which changes Dispatch Prohibited/ Dispatch

Permitted status in these Handler/Routine, is called, it will return to E_CTX error.

3．1．5 Idle status

Idle is executed when there is no Task in runnable state, no Time Event Handler, no Interrupt

Process, and that status is called “Idle Status”. Right after starting Idle execution, it will be in

CPU Lock Release status, Dispatch Permitted status. In µC3/Compact, Idle status has its

independent Context, but its characteristic is different from other Contexts. That different

characteristic is not to preserve the Context when changing into other Contexts.

Because Context is not saved, Interrupt is happening in Idle execution and after executing

Non-Task Context, it will not return to the place occuring Interrupt in Idle. In case of changing to

Idle Context, it must be executed from the beginning of Idle.

Idle which prepares kernel is a simple loop without processing. In this Idle, it is possible to

define Idle function by users in configuration.

μC3/Compact Users Guide

18
Copyright © eForce Co.,Ltd. All Rights Reserved

3．1．6 Task State during Dispatch Pending State

Regarding to Dispatcher, there will be no Dispatch while executing process with high Priority

Order, in CPU Lock status, while raising Interrupt level more than Task level, and in Dispatch

Pending status. This status is called Dispatch Reservation status.

In Dispatch Reservation status, even there is Task of high Priority Order, this Task will not be

dispatched. Dispatch of Task with high Priority Order will be reserved till Dispatch occurring

status. While Dispatch is being reserved, all Tasks which have been executing till then will be in

executing status, and after it becomes Dispatch occurring status, task that should be executed

is in a ready condition.

Task status in Dispatch Reservation status is explained in the following chart.

Chart of Dispatch Reservation status and Task status

There is a case in consideration when there is Task B with Priority Level that is higher than

Task A, starting from Interrupt Service Routine by an interrupt occurring in execution of Task A.

Because Priority Order of Interrupt Service Routine is higher than Dispatcher, even after Task B

is started up, it will become Dispatch Reservation status and Dispatch is not occurring while

Interrupt Service Routine is being executed. When execution of Interrupt Service Routine ends,

Dispatcher is executed, then Task A changes to possible execution status and Task B changes

into execution.

Even after Task B is started up in Interrupt Handler, Task A is still in execution status and

Task B is possible execution status till Dispatcher is executed.

S
ta

tu
s

o
f

p
o
ssib

e

e
x
e
cu

tio
n

Task B

(Low Priority Level)

Task B

(High Priority Level)

Dispatcher Interrupt Service
Routine

iact_tsk(Task
B)

E
x
e
cu

tin
g
 sta

tu
s

Occurring Interrupt

Dispatch
Reservation

Status

Chapter 2 Basic concept of μC3/Compact

19
Copyright © eForce Co.,Ltd. All Rights Reserved

3．2 Shared Stack

Shared Stack is Stack space which is possible to use for various Tasks. Also, Shared Stack

is not able to use simultaneously for various Tasks, but it has function to control exclusively so

as various Tasks are not able to use the same Stack space at the same time. There are 2

methods of exclusively controlling Shared Stack: method of specifying attribute of Restriction

Task and method of using Stack Release Wating status without attribute of Restriction Task.

However, it is possible for the same Shared Stack to let Task which has and has not attribute of

Restriction Task to exist together.

3．2．1 Method of using attribute of Restricted Task

Specify attribute of Restriction Task to Task which is using Shared Stack; and Task using the

same Shared Stack will specify all same Task Priority Level. By this, all Tasks using the same

Shared Stack will be exclusively controlled once so that they are not dispatched till Task in

execution status ends. However, there is a case in consideration when continuously starting-up

Task A and Task B of Task Priority Level N that specifies a certain Shared Stack, and Task A

has been dispatched.

Before ending Task A, if Task B is in executing status, these 2 Tasks are using Stack space at

the same time and content of the Stack is destroyed. The reason that Task B is dispatched

before ending Task A can be thought in a case when Task A is in Waiting status and there is

change in Priority Order of Task Priority Level N. It is prevented by attribute of Restriction Task.

It never comes off from Task Priority Order because Restriction Task is not changed to Waiting

status. Also, there is chg_pri,rot_rdq as a System Call to which a change is added in the order

of Task Priority Order. Therefore, when calling out chg_pri, by which specifies Restriction Task

and rot_rdq which Priority Level of Restriction Task is specified by Task with the highest Priority

Order, it will return to E_CTX error. In other words, chg_pri by which specifies Task A and

rot_rdq by which specifies Priority Level N will return to E_CTX error.

3．2．2 Method of using Stack Release Waiting status

It does not specify attribute of Restriction Task but use Shared Stack. When the Task

specifying Shared Stack is changing from possible execution status to executing status, if

Shared Stack is not occupied with other Tasks, then occupy Shared Stack and it is dispatched;

if Shared Stack is occupied with other Tasks, then change to Shared Stack Release Waiting

status. If the Task which occupies Shared Stack has ended, then release the Shared Stack and

change to possible execution status for Task with high Priority Order in Shared Stack Release

Waiting status of that Shared Stack.

When this method is useful, it might be controlled exclusively by the application because it is

μC3/Compact Users Guide

20
Copyright © eForce Co.,Ltd. All Rights Reserved

a Task that might not be executed at the same time, and there is a case that Task specifying

Shared Stack is started-up. And in this case, even the Task is not confirmed to be changed to

Dormant status safely, Shared Stack still can be used safely. Besides, when it is necessary to

start the Task exclusively, it is possible to run it easily by specifying Shared Stack.

3．3 Configurator

It has been decided in system design that configuration information becoming parameter of

each Object would be input to configurator, and skeleton code becoming template of necessary

source file and application program is generated. There are configuration information of kernel

which is not depending on processor and configuration of device driver depended on processor.

Besides, there are configuration information of common kernel and Object in configuration of

kernel. Also, configuration of device driver is depending to processor, so please refer to

“Processor dependance part Manual”, “Device dependence part Manual” for more explanation.

3．3．1 Configuration information of common kernel

Configuration information of common kernel is including the following items:

・ Tick time specifying period of Time Tick.

・ Number of Task Priority Level specifying upper value of Task Priority Level.

・ Additional header file is added to include to configuration file.

・ Idle function of user definition.

・ Size of System Stack.

・ Kernel mask level. (Only support "Ver.2.x kernel")

3．3．2 Configuration Information of Kernel Objects

Execute the following configuration corresponding to static API and configuration of creating

Shared Stack:

・ CRE_TSK Create Task

・ CRE_SEM Create Semaphore

・ CRE_FLG Create Even Flag

・ CRE_DTQ Create Data Queue

・ CRE_MBX Create Mailbox

・ CRE_MPF Create Fixed-Sized Memory Pool

・ CRE_CYC Create Cyclic Handler

・ ATT_ISR Attach Interrupt Service Routine

Chapter 2 Basic concept of μC3/Compact

21
Copyright © eForce Co.,Ltd. All Rights Reserved

3．3．3 Generated source code

In grand dividion, file is generated basing on thise configuration information. However, types

of generated file will be different by configuration content.

・ File which is not depending to generated processor.

・ File which must depend to generated processor

・ File depended to device driver

3．4 Task Management Functions

Task management functions provide direct control of task states and reference to the task

states. In detail, it is including the following functions:

・ Activate a task(act_tsk,iact_tsk,sta_tsk)

・ Terminate a task(ext_tsk,ter_tsk)

・ Cancel activation requests(can_act)

・ Change a task priority(chg_pri)

・ Reference the task State(get_pri,ref_tsk,ref_tst)

Activation requests for a task are queued. In other words, if a task has already been

activated and an activation request is made for the task, the new request is recorded. When the

task terminates under this situation, the task will be automatically activated again.

However, activation requests will not be queued when the service call that activates a task

with the specified start code (sta_tsk) is used. A task includes an activation request count to

realize the activation request queuing. This activation request count is cleared to 0 when the

task is created.

When a task is activated, its extended information (exinf) is passed as a parameter. However,

when a task is activated by the service call with a start code (sta_tsk), the specified start code

is passed through the parameter instead of the extended information.

When a task is activated, the task's base priority and current priority are initialized, the task's

wakeup request count t is cleared.

The format to write a task in the C language is shown below:

void task(VP_INT exinf)

{

/* Bod of the task */

ext_tsk();

}

The behavior of a task returning from its main routine is identical to invoking ext_tsk, i.e. the

task terminates.

μC3/Compact Users Guide

22
Copyright © eForce Co.,Ltd. All Rights Reserved

The following kernel configuration constant is defined for use with task management

functions:

TMAX_ACTCNT Maximum activation request count (255)

Chapter 2 Basic concept of μC3/Compact

23
Copyright © eForce Co.,Ltd. All Rights Reserved

3．5 Task Dependent Synchronous Functions

Task dependent synchronization functions provide direct control of task states to synchronize

tasks. In detail, it is including the following functions:

・ Put a task to the sleeping state (slp_tsk,tslp_tsk)

・ Wake up a task from the sleeping state (wup_tsk,iwup_tsk)

・ Cancel wakeup request (can_wup)

・ Forcibly release a task from waiting (rel_wai,irel_wai)

・ Delay the execution of the invoking task (dly_tsk)

Wakeup requests for a task are queued. In other words, if a task is not in the sleeping state

and a wakeup request is made for the task, the new request is recorded. When the task enters

the sleeping state under this situation, the task will not be put in the sleeping state.

A task includes a wakeup request count to realize the wakeup request queuing. This wakeup

request count is cleared to 0 when the task is activated.

The following kernel configuration constants are defined for use with task dependent

synchronization functions:

TMAX_WUPCNT Maximum wakeup request count (255)

μC3/Compact Users Guide

24
Copyright © eForce Co.,Ltd. All Rights Reserved

3．6 Synchronization and Communication Functions

Synchronization and communication functions provide synchronization and communication

between tasks through objects that are independent of the tasks. The objects are semaphores,

eventflags, data queues, and Mailboxes.

3．6．1 Semaphore

A semaphore is an object used for mutual exclusion and synchronization. A semaphore

indicates the availability and number of unused resources by a resource count. In detail, it is

including the following functions:

・ Release resource (sig_sem,isig_sem)

・ Acquire resource (wai_sem,pol_sem,twai_sem)

・ Reference the state of a semaphore (ref_sem)

A semaphore has an associated resource count and a wait queue. The resource count

indicates the resource availability or the number of unused resources. The wait queue

manages the tasks waiting for resources from the semaphore. When a task releases a

semaphore resource, the resource count is incremented by 1. When a task acquires a

semaphore resource, the resource count is decremented by 1. If a semaphore has no

resources available, or more precisely, the resource count is 0, a task attempting to acquire a

resource will wait in the wait queue until a resource is returned to the semaphore or till the time

allowed.

In order to avoid the case where too many resources are returned to a semaphore, each

semaphore has a maximum resource count indicating the maximum number of unused

resources available to the semaphore. If more resources are returned to the semaphore than

its maximum resource count, an error will be returned.

The following kernel configuration constant is defined for use with semaphore functions:

TMAX_MAXSEM Maximum value of the maximum definable semaphore resource

 count (255)

3．6．2 Eventflags

An eventflag is a synchronization object that consists of multiple bits in a bit pattern where

each bit represents an event. In detail, it is including the following functions:

・ Set an eventflag (set_flg,iset_flg)

・ Clera an eventflag(clr_flg)

・ Wati for an eventflag(wai_flg,pol_flg,twai_flg)

・ Reference the state of an eventflag (ref_flg)

Chapter 2 Basic concept of μC3/Compact

25
Copyright © eForce Co.,Ltd. All Rights Reserved

An eventflag has an associated bit pattern expressing the state of its events, and a wait

queue for tasks waiting on these events. Sometimes the bit pattern of an eventflag is simply

called an eventflag. A task is able to set specified bits when an event occurs and is able to clear

specified bits when necessary. Tasks waiting for events to occur will wait until at least one bit or

every bit in the eventflag bit pattern is set or till the time allowed. Tasks waiting for an eventflag

are placed in the eventflag's wait queue.

The following data type is used for eventflag functions:

TBIT_FLGPTN The number of bits in an eventflag (depending on processor)

3．6．3 Data Queues

A data queue is an object used for synchronization and communication by sending or

receiving a one word message, called a data element. In detail, it is including the following

functions:

・ Send a data element to data queue (snd_dtq,psnd_dtq,ipsnd_dtq,tsnd_dtq)

・ Force-Send a data element to data queue (fsnd_dtq,ifsnd_dtq)

・ Receive a data element from data queue (rcv_dtq,prcv_dtq,trcv_dtq)

・ Reference the state of a data queue (ref_dtq)

A data queue has an associated wait queue for sending a data element (send-wait queue)

and an associated wait queue for receiving a data element (receive-wait queue). Also, a data

queue has an associated data queue area(ring-buffer) used to store sent data elements. A task

sending a data element (notifying the occurrence of an event) places the data element in the

data queue. If there is no room in the data queue area, the task will be in the sending waiting

state for a data queue until there is room for the data element in the data queue area or till the

time allowed.

Synchronous message passing can be performed by setting the number of data elements

that can be stored in the data queue area to 0. The sending task and the receiving task wait unti

the other calls the complimentary service call, at which time the data element is transferred.

The one word data element to be sent and received can be an integer or the address of a

message located in a memory area shared by the sender and the receiver. A data element that

is sent and received is copied from the sender to the receiver.

If task A invokes snd_dtq first, task A is moved to the WAITING state until task B invokes

rcv_dtq. During this time, task A is in the sending waiting state for a data queue. If, on the other

hand, task B invokes rcv_dtq first, task B is moved to the WAITING state until task A invokes

snd_dtq.

Task A Task B Task A Task B

snd_dtq(dtqid)

rcv_dtq(dtqid)

Sending
waiting

state
snd_dtq(dtqid)

 rcv_dtq(dtqid)

Receiving
waiting

state

μC3/Compact Users Guide

26
Copyright © eForce Co.,Ltd. All Rights Reserved

Synchronous Communication through a Data Queue

3．6．4 Mailboxes

A Mailbox is an object used for synchronization and communication by sending or receiving a

message placed in a shared memory. In detail, it is including the following functions:

・ Send a message to a Mailbox (snd_mbx)

・ Receive a message from a Mailbox (rcv_mbx,pol_mbx,trcv_mbx)

・ Reference the state of a Mailbox (ref_mbx)

Mailbox is including queue of waiting for receiving message and Message cue.

When a message is sent to Mailbox, message will be passed to a Task which is in receiving

status, and the Task is changing from waiting status to possible execution status. In case there

is no Task in waiting status, a message will be put to Message cue.

When a message is received from Mailbox, if there is message in Message cue, it will be

taken out. If there is no message, it is connected to queue of waiting for receiving and changed

to receiving-waiting status till a message is sent or till a permitted time. In fact, messages which

is sent or received by Mailbox are only the ones of beginning number in memory, and content of

sent or received message is not copied.

Transmission of messages in Mailbox is done by the first number of message packet

prepared by application as a parameter. Besides, a message is received by the first number of

message packet as return parameter. In detail, message packet is composed by a message

header that kernel can specify order of message queue to the first field with the message itself

used in the application that continues to it.

For example, T_MSGPKT type of message packet is defined as following:

typedef struct t_msgpkt{

 T_MSG* pk_msg; /* message header */

 /* the message used by application */

Chapter 2 Basic concept of μC3/Compact

27
Copyright © eForce Co.,Ltd. All Rights Reserved

} T_MSGPKT;

In application, content of message which is message queue is never rewritten. Also, a

message which is already in Message cue must not be sent again to Mailbox. In case either of

cases above is disobeyed, message will be destructed and it will lead to a fatal error.

【Recommendation】

It is possible to use memory block dynamically secured from the Fixed-Sized memory pool,

and area secured statically as the message packet. As usage, it is recommend that Task of

sending side will save memory block from memory pool to send as message packet; Task of

receiving side will return that memory block directly to memory pool after taking out message

content.

3．7 Memory Pool Management Functions

Memory pool management functions provide dynamic memory management by software and

it is including fixed-sized memory pools.

3．7．1 Fixed-Sized Memory Pools

A fixed-sized memory pool is an object for dynamically managing fixed-sized memory blocks.

In detail, it is including the following functions: Fixed

・ Acquire a memory block from a fixed-sized memory pool (get_mpf,pget_mpf,tget_mpf)

・ Release a memory block to a fixed-sized memory pool(rel_mpf)

・ Reference the state of a fixed-sized memory pool (ref_mpf)

A fixed-sized memory pool has an associated memory area where fixed-sized memory

blocks are allocated (this is called fixed-sized memory pool area or simply memory pool area)

and an associated wait queue for acquiring a memory block. If there are no memory blocks

available, a task trying to acquire a memory block from the fixed-sized memory pool will be in

the waiting state for a fixed-sized memory block until a memory block is released or till the time

allowed. The task waiting to acquire a fixed-sized memory block is placed in the fixed-sized

memory pool's wait queue.

In case memory block is returned, application will return it to Fixed-Sized memory pool of

same ID number which had been gained memory block, and the first number of gained

memory block must be used in the time of return. Also, memory block which has already been

returned must not be overlapped to return. In case either of cases above is disobeyed,

management information of the Fixed-Sized memory pool will be destructed and it will lead to a

fatal error.

μC3/Compact Users Guide

28
Copyright © eForce Co.,Ltd. All Rights Reserved

3．8 Time Management Functions

Time management functions provide time-dependent processing. It is including each function

of system time management and cycle handlers.

3．8．1 System Time Management

System time management functions provide control over system time. In detail, it is including

the following functions:

・ Set and get the system time (set_tim,get_tim)

・ Supply a time tick for updating the system time (isig_tim)

The system time is initialized to 0 when the system is started and will be updated every time

isig_tim is invoked by the application. However, System Time is managed by mili-second unit,

and all time specified by System Call or configurator is in mili-second unit.

The following features depend on the system time: processing of timeouts, releasing tasks

from waiting after a call to dly_tsk, and activation of cyclic handlers. However, even changing

System Time by setting System time (set_tim), time-out time of System Call, which has already

been called, will not be changed.

3．8．2 Cyclic Handlers

A cyclic handler is a time event handler activated periodically. In detail, it is including the

following functions:

・ Start a cyclic handler's operation (sta_cyc)

・ Stop a cyclic handler's operation (stp_cyc)

・ Reference the state of a cyclic handler (ref_cyc)

Status of cycle handler will be either operation status or non-operation status.

When starting up System, if TA_STA attribute has been specified, it will be in operation status.

Also, if either TA_STA attribute or TA_PHS attribute is specified, Time when starting-up phase

has been added at the system starting time will become the time that should start nextly. In

case neither of the attribute is specified, Time which has been added starting-up phase to the

time called by System Call (sta_cyc) starting in operation of cycle handler at the system starting

time will become the time that should start nextly. Then that extended information of cycle

handler is made as parameter (exinf) to start up cycle handler. At this time, Time which has

been added starting-up phase to the time starting-up cycle handler will become the time that

should start nextly.

Chapter 2 Basic concept of μC3/Compact

29
Copyright © eForce Co.,Ltd. All Rights Reserved

In the status of non-operation of cycle handler when there is TA_PHS attribute, even it

becomes the time of start up cycle handler, cycle handler will not be start up, and only time

which should start up nextly is decided. When System Call (sta_cyc) which starts operation of

cycle handler is called, it will change to operation status of cycle handler, Time that cycle

handler should be started nextly is decided again if necessary. When System Call (stp_cyc)

which stops operation of Cycle Handler is called, it will be changed to non-operation status of

Cycle Handler.

Preserving Activation Phase

Starting-up cycle of Cycle Handler is based on time which should have for starting up Cycle

Handler (not the time of being already started), it is accepted as phase time specifying nextly

starting-up time for Cycle Handler. Therefore, The interval of time when the Cycle handler is

started might become individually shorter than starting cycle, but it is consistent with starting

cycle when averaging the long period.

The n time of starting-up Cycke Handler is secured to be executed after System Call

generating Cycle Handler is called and more than time of (starting phase＋starting cycle ×

(n-1)) has passed. The start of times n of A guarantees to do after the time of B or more passes

after the system call that generates A is called. For example, in a System which cycle of Time

tick is 10 mili-second, if generating a Cycle Handler with 15 mili-second of starting phase and

25 mili-second of starting cycle, then System time started up by Cycle starting Handler will be

20 mili-second, 40 mili-second, 70 mili-second, 90 mili-second, 120 mili-second.

Cycle Handler is described in the following form:

void cychdr(VP_INT exinf)

{

The Cycle Handler

}

Start-up system

activation phase activation cycle activation cycle

sta_cyc Cyclic handler is activated

(a)When the activation phase is preserved(with TA_PHS specifying）

Start-up cycle
Standard time

Start-up cycle
Standard time

activation phase activation cycle activation cycle

sta_cyc
Cyclic handler is activated

(b) When the activation phase is not preserved (without TA_PHS specifying）

Start-up system

μC3/Compact Users Guide

30
Copyright © eForce Co.,Ltd. All Rights Reserved

3．9 System State Management Functions

System state management functions provide control of and reference to the various system

states. In detail, it is including the following functions:

・ Rotate task precedence (rot_rdq,irot_rdq)

・ Reference the ID of the task in the RUNNING state (get_tid,iget_tid)

・ Lock and unlock the CPU (loc_cpu,iloc_cpu,unl_cpu,iunl_cpu)

・ Enable and disable dispatching (dis_dsp,ena_dsp)

・ Reference the context and the system state (sns_ctx,sns_loc,sns_dsp,sns_dpn,ref_sys)

Chapter 2 Basic concept of μC3/Compact

31
Copyright © eForce Co.,Ltd. All Rights Reserved

3．10 Interrupt Management Functions

Interrupt management functions provide management for interrupt service routines started

by external interrupts. In detail, it is including the following functions:

・ Disable and enable an interrupt (dis_int,ena_int)

・ Change and reference the interrupt mask (chg_ims,get_ims)

The following data types are used for interrupt management functions:

INTNO Interrupt number

IMASK Interrupt Mask

A part of IMASK in data type of Interrupt Mask is different in content by processor's

architecture. Also, implementation function of disabling/enabling an interrupt(dis_int,ena_int) is

different by processor. Please refer to “Processor dependence part Manual” for more

explanation.

When calling an interrupt service routine, the extended information (exinf) of the interrupt

service routine is passed as a parameter.

The format to write an interrupt service routine in the C language is shown below:

void isr(VP_INT exinf)

{

/* Body of the interrupt service routine */

}

μC3/Compact Users Guide

32
Copyright © eForce Co.,Ltd. All Rights Reserved

3．11 System Configuration Management Functions

System configuration management functions provide management for the system

configuration and version information. In detail, it is including the following functions:

・Reference the system configuration (ref_cfg)

・Reference version information (ref_ver)

CHAPTER 4 Usage of Configurator

33
Copyright © eForce Co.,Ltd. All Rights Reserved

CHAPTER 4 Usage of Configurator

4．1 Operation of the configurator : "Ver.2.x configurator"

4．1．1 Starting up Configurator

Please double click “µC3conf.exe” to start up.

A．In case of creating a new project

After selecting “Create a new project” , click “OK” and go to “Select CPU” .

μC3/Compact Users Guide

34
Copyright © eForce Co.,Ltd. All Rights Reserved

Select CPU

After selecting CPU series, CPU, serial number, target in List, click “OK” and go to “Main

screen” .

B．In case of opening an existing project

After selecting “Open existing project” , click “OK” and go to “Open file” .

CHAPTER 4 Usage of Configurator

35
Copyright © eForce Co.,Ltd. All Rights Reserved

Open file

After selecting a saved project file(extension.3cf), click “Open” and go to “Main screen” .

μC3/Compact Users Guide

36
Copyright © eForce Co.,Ltd. All Rights Reserved

C．Main screen

After starting up, it will go to the main screen where it is possible to refer or edit project. By

clicking to each Object of Tree Display, it will switch to each Object Configutation screen.

Here, there is configuration of kernel or processor dependence part. Please refer to

“Processor dependence part Manual” for more explanation.

CHAPTER 4 Usage of Configurator

37
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．2 Set-up kernel

In kernel configuration, there are configurations of common kernel and Objects such as Task,

Semaphore etc…. In configuration screen of each Object type, 1 Object is corresponding to 1

tab.

At the bottom of status bar, it often displays using capacity of memory which is managed by

kernel. The following figure is an example of Configuration screen of an Object.

In each item, there is tab which is displayed in grey and impossible to change or to select

“Delete” button. This kind of tab is Object which is added and synchronized to configuration of

device driver.

 “Add” button

To add a new Object or its corresponding tab.

 “Delete” button

To delete Object of tab which is selected at the moment.

μC3/Compact Users Guide

38
Copyright © eForce Co.,Ltd. All Rights Reserved

 “←” button

Move to the left of a tab which is selected at the moment.

 “→” button

Move to the right of a tab which is selected at the moment.

Memory using capacity

Item Content

System Memory used by kernel itself, management area of Object, buffer of

Data Queues.

Stack System stack, Individual Task stack, Shared stack

Memory pool Memory pool area of Fixed-Sized memory pool

CHAPTER 4 Usage of Configurator

39
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．2．1 Configuration of common kernel

When clicking to kernel of Tree Display, configuration screen of common kernel will be

displayed to execute configuration for common kernel.

Add header file

When defining pointer to value of macro or variable as extended information of Task and

Cycle Handler, file name of header file which describes external declaration of macro definition

or variable will be specified. In detail, when a file name is specified here, that file will be

included in kernel_cfg.c.

Idle function

Specify that function name when not using standard Idle function of internal kernel but

replacing it with Idol function of user definition.

Number of Task Priority Level

It is possible to specify from 1 to 16, and Task Priority Level which is upper to this value.

μC3/Compact Users Guide

40
Copyright © eForce Co.,Ltd. All Rights Reserved

Tick Time

Cycle of Time Tick is specified in mili-second unit. The less the value is, the more accuracy

the time is, but the overhead will be bigger.

System Stack Size

Size of Stack area used by Time Event Handler and interrupt Service Routine is specified

in byte unit.

CHAPTER 4 Usage of Configurator

41
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．2．2 Configuration of Task

When clicking to Task of Tree Display, configuration screen of Task will be displayed,

configuration corresponding to CRE_TSK of Task creating API will be executed.

ID Symbol

Please specify optional definition name displaying ID number of Task. This definition name is

macro-defined in kernel_id.h.

Function name

Specify function name of option Task.

Initial value of Priority Level

When starting up Task, please specify value of initializing Task Priority Level which is not

exceeding Task Priority Level number of common kernel. When specifying shared stack and

attribute of Restriction Task(TA_RSTR=ON), the same task priority as other tasks which

specified the shared stack will be specified.

Extension information

In case there is extension information which is passing to Task, then specify it, and leave it it

μC3/Compact Users Guide

42
Copyright © eForce Co.,Ltd. All Rights Reserved

blank if it is unnecessary. In extension information, it is possible to specify numerical value,

value which is macro-defined and pointer to variable. In case of passing pointer to variable,

attach “&” to the beginning of variable name.

Stack size

Please specify size of peculiar stack to Task. When a field of peculiar stack, which is out of

“Not use” , is specified, it will become invalid and impossible to change.

TA_HLNG/TA_ASM

It will become fixed TA_HLNG, and impossible to change in µC3/Compact.

TA_ACT

When checking, TA_ACT attribute will become ON, and Task is created in possible

execution status.

TA_RSTR

When checking, TA_RSTR attribute will become ON, and attribute of Restriction Task is

given. When selecting the shared stack which was described later, it will be automatically

checked, but it is possible to remove the check later. In case shared stack is used by various

Tasks, all those Tasks must be either TA_RSTR=ON, or TA_RSTR=OFF.

Shared stack

Regarding to field of shared stack, if there are more than 1 shared stack defined, it will be

possible to select that definition name.

CHAPTER 4 Usage of Configurator

43
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．2．3 Configuration of Semaphore

When clicking to Tree Display of Semaphore, configuration screen of semaphore will be

displayed for configuration which is corresponding to CRE_SEM of semaphore creating API.

ID Symbol

Please specify optional definition name which displays ID number of semaphore. This

definition name is macro-defined in kernel_id.h.

Initial value of resource number

Specify initial value of semaphore count which is not exceeding maximum resource number.

Maximum resource number

Please specify maximum value of semaphore count. The maximum value which can be

specified is 255.

TA_TFIFO/TA_TPRI

It will become fixed TA_TFIFO and impossible to change in µC3/Compact.

μC3/Compact Users Guide

44
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．2．4 Configuration of Eventflag

When clicking to Tree Display of Eventflag, configuration screen of Eventflag will be

displayed for configuration which is corresponding to CRE_FLG of Eventflag creating API.

ID Symbol

Please specify optional definition name which displays ID number of Eventflag. This

definition name is macro-defined in kernel_id.h.

Initial value of bit pattern

Please specify initial value of Eventflag by hexadecimal number.

TA_TFIFO/TA_TPRI

It will become fixed TA_TFIFO and impossible to change in µC3/Compact.

TA_WSGL/TA_WMUL

By specifying TA_WSGL, waiting of various Tasks will be prohibited. By specifying TA_WMUL,

waiting of various Tasks will be permitted.

CHAPTER 4 Usage of Configurator

45
Copyright © eForce Co.,Ltd. All Rights Reserved

TA_CLR

If checking, attribute of TA_CLR will be ON, and when Task is released from Eventflag waiting

by a condition approval, all bits of bit pattern are cleared.

μC3/Compact Users Guide

46
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．2．5 Configuration of Data Queues

When clicking to Tree Display of Data Queues, configuration screen of Data Queues will be

displayed for configuration which is corresponding to CRE_DTQ of Data Queues creating API.

ID Symbol

Please specify optional definition name which displays ID number of semaphore. This

definition name is macro-defined in kernel_id.h.

Number of data

Spacify number of Data Queues (number of data).

TA_TFIFO/TA_TPRI

It will become fixed TA_TFIFO, and impossible to change in µC3/Compact.

CHAPTER 4 Usage of Configurator

47
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．2．6 Configuration of Mailbox

When clicking to Tree Display of Mailbox, configuration screen of Mailbox will be displayed

for configuration which is corresponding to CRE_MBX of Mailbox creating API.

ID Symbol

Please specify optional definition name which displays ID number of Mailbox. This definition

name is macro-defined in kernel_id.h.

TA_TFIFO/TA_TPRI

It will become fixed TA_TFIFO and impossible to change in µC3/Compact.

TA_MFIFO/TA_MPRI

It will become fixed TA_MFIFO and impossible to change in µC3/Compact.

μC3/Compact Users Guide

48
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．2．7 Configuration of Fixed-Sized memory pool

When clicking to Tree Display of Fixed-Sized memory pool, configuration screen of

Fixed-Sized memory pool will be displayed for configuration which is corresponding to

CRE_MPF of Fixed-Sized memory pool creating API.

ID Symbol

Please specify optional definition name which displays ID number of Fixed-Sized memory

pool. This definition name is macro-defined in kernel_id.h.

Number of memory block

Specify number of memory block.

Size of memory block

Specify size of memory block (number of byte).

TA_TFIFO/TA_TPRI

It will become fixed TA_TFIFO and impossible to change in µC3/Compact.

CHAPTER 4 Usage of Configurator

49
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．2．8 Configuration of Cycle Handler

When clicking to Tree Display of Cycle Handler, configuration screen of Cycle Handler will be

displayed for configuration which is corresponding to CRE_CYC of Cycle Handler creating API.

ID Symbol

Please specify optional definition name which displays ID number of Cycle Handler. This

definition name is macro-defined in kernel_id.h.

Function name

Specify function name of optional Cycle Handler.

Extension information

If there is extension information which is passing to Cycle Handler, specify it, or in case of

unnecessary, just leave it in blank. In extension information, it is possible to specify numerical

value, macro-defined value, pointer to variable. If passing pointer to variable, attach “&” to the

beginning of variable name.

Starting-up cycle

Starting-up cycle of Cycle Handler is specified by mili-second unit. However, small value

μC3/Compact Users Guide

50
Copyright © eForce Co.,Ltd. All Rights Reserved

cannot be specified by Tick time.

Starting-up phase

Starting-up phase of Cycle Handler is specified by mili-second unit.

TA_HLNG/TA_ASM

It is impossible to change in µC3/Compact.

TA_STA

If checking and attribute of TA_STA is ON, Cycle Handler is generated by operation status.

TA_PHS

If checking and attribute of TA_PHS is ON, phase when generating Cycle Handler is saved.

CHAPTER 4 Usage of Configurator

51
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．2．9 Configuration of Interrupt Service Routine

When clicking to Tree Display of Interrupt Service Routine, configuration screen of Interrupt

Service Routine will be displayed for configuration which is corresponding to ATT_ISR of added

API of Interrupt Service Routine.

Interrupt number

Please specify interrupt number. When configurating various Interrupt Service Routine to the

same interrupt number, calling order will follow order of tab and the more it is on the left, the

faster it will be called.

Function name

Specify function name of optional Interrupt Service Routine.

Extension number

If there is extension information which is passing to Interrupt Service Routine, specify it, or in

case of unnecessary, just leave it in blank. In extension information, it is possible to specify

numerical value, pointer to variable.

μC3/Compact Users Guide

52
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．2．10 Configuration of Shared stack

When clicking to Tree Display of Shared Stack, configuration screen of Shared Stack will be

displayed for configuration of Shared Stack.

ID Symbol

Please specify optional definition name which displays ID number of Shared Stack. This

definition name is used to select Shared Stack in configuration screen of Task.

In case there is even 1 Task using this Shared Stack, it will be impossible to change definition

name.

Size of Stack

Specify size of Shared Stack (byte number). The Stack size of Task selecting the use of

Shared Stack is fixed to size of Shared Stack. Therefore, Stack size of Task which uses the

most Stack is specified by the Task specifying this Shared Stack.

Deletion

In case there is even 1 Task using that Shared Stack, display warning message and it will be

deleted. In that case, Shared Stack of the Task is changed to “Not use” .

CHAPTER 4 Usage of Configurator

53
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．3 Saving project file

From “File” → “Save…(S)” , open “name and save screen” , specify saving folder for

project file and click “OK” .

Regarding to the saved file, the file that changed project file (default config..3cf)and

extension to “xml” would be saved.

By opening this file by browser, it is possible to confirm configuration information.

Note: This XML information is only Japanese in current version.

μC3/Compact Users Guide

54
Copyright © eForce Co.,Ltd. All Rights Reserved

CHAPTER 4 Usage of Configurator

55
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．4 Generate source

From “File” → “Generate source…(G)” , open “screen of referring folder” , specify optional

folder which deploy to create file and click “OK” .

In case there is already skeleton code main.c existing, confirming message will be displayed

in other to prevent application file which has been finished editing from being overwritten and

deleted.

【Recommendation】

In order to prevent skeleton code from being overwritten and deleted, it is recommended not to

directly edit to skeleton code but using template to create application program.

A．Files which are not depended to a surely created processor

File Content

kernel_id.h Defined header file of Object ID or Device ID

kernel_cfg.c Configuration information file of kernel

kernel.h Header file of kernel

main.c Skeleton code such as main(), initially set-up function, Task or

Handler

μC3/Compact Users Guide

56
Copyright © eForce Co.,Ltd. All Rights Reserved

B．Files which are depended to a surely created processor

File Content

itron.h Header file of kernel

Start-up Initialization process by Power-on reset(Assembler language)

Vector table Interrupt vector table(Assembler language)

Exceptional Handler Exceptional Handler including interrupt Handler(Assembler

language)

Kernel Library Library summarizing basis part of kernel and system call group

C．Files depended on device driver

File Content

I/O defined file Header file defining I/O of processor

DDR_xxxxx.c Source file of device driver

DDR_xxxxx.h Header file of of device driver

DDR_xxxxx_cfg.h Configuration file of of device driver

These created files are different according to configuration or processor or device.

CHAPTER 4 Usage of Configurator

57
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．5 Error check when creating source

When creating source, the following items will be checked. In case there is some problem,

error message will be displayed and file will not be created.

 Check items which must not empty ID or function name.

 Check scope of total ID.

 Check scope of Task Priority Level.

 Check relation of Task Priority Level and Restriction Task attribute among Tasks which

use Stack in common.

 Check scope of initial value of Semaphore.

 Check scope of start-up cycle of Cycle Handler.

4．1．5．1 Total ID

All Object ID, including ID used in RTOS which user cannot see, will be managed by unique

8-bit value. Therefore, maximum of total ID will be 255, and number which can create Object

will become less than 255.

Total ID is calculated like following formula:

 Upper limit of Task Priority Level

 Number of Shared Stack

 Number of Task

 Number of Semaphore

 Number of Eventflag

 Number of Mailbox

 Double number of Data Queues

 Number of Fixed-Sized memory pool

 ＋) Number of Cycle Handler

───────────────────────

 Total ID

【Complement】

In the evaluation edition of µC3/Compact, total ID is limited to 16.

μC3/Compact Users Guide

58
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2 Operation of the configurator : Current Version

4．2．1 Starting up Configurator

Please double click “µC3conf.exe” to start up.

A．In case of creating a new project

From the Configurator toolbar, click “New Project” and go to “Select CPU” .

CHAPTER 4 Usage of Configurator

59
Copyright © eForce Co.,Ltd. All Rights Reserved

Select CPU

After selecting CPU vendors, CPU, serial number, target in List, click “OK” and go to “Main

screen” .

B．In case of opening an existing project

From the Configurator toolbar, click “Open” and go to “Open file” .

μC3/Compact Users Guide

60
Copyright © eForce Co.,Ltd. All Rights Reserved

Open file

After selecting a saved project file(extension.3cf), click “Open” and go to “Main screen” .

*:Project file created by "Ver.2.x configurator" is read only kernel configuration.

(CPU configuration is not read)

CHAPTER 4 Usage of Configurator

61
Copyright © eForce Co.,Ltd. All Rights Reserved

C．Main screen

After starting up, it will go to the main screen where it is possible to refer or edit project. There

is a menu screen to the left of the main screen. By clicking to each Object of Menu Screen, it

will switch to each Object Configutation screen.

Here, there is configuration of kernel or processor dependence part. Please refer to

“Processor dependence part Manual”, “Device dependence part Manual” for more explanation.

*:Due to limitations of space, the description has been described with separate configuration

screen and menu screen.

μC3/Compact Users Guide

62
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．2 Set-up kernel

In kernel configuration, there are configurations of common kernel and Objects such as Task,

Semaphore etc…. In configuration screen of each Object type, 1 Object is corresponding to 1

line of the list.

The following figure is an example of Configuration screen of an Object.

 “Add” button

Dialog for adding a new object appears. The object is added by setting the required items. In

addition, you can double-click the list in Configuration screen, it is possible to update the

contents of the object can be achieved.

 “Delete” button

To delete Object of the list in Configuration screen which is selected at the moment. There is

an object can not be deleted. This kind of Object is Object which is added and synchronized to

configuration of device driver.

CHAPTER 4 Usage of Configurator

63
Copyright © eForce Co.,Ltd. All Rights Reserved

 “Up” button

Move to the up of a list item which is selected at the moment.

 “Down” button

Move to the down of a list item which is selected at the moment.

μC3/Compact Users Guide

64
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．2．1 Configuration of general kernel

When clicking to “General” of Menu Screen, configuration screen of general kernel will be

displayed to execute configuration for general kernel.

Menu Screen

Configuration Screen

CHAPTER 4 Usage of Configurator

65
Copyright © eForce Co.,Ltd. All Rights Reserved

Kernel Mask Level

Set the Kernel Mask Level. Please refer to “Processor dependence part Manual” for more

explanation.

Maximum task priority

It is possible to specify from 1 to 16, and Task Priority Level which is upper to this value.

Tick Time

Cycle of Time Tick is specified in mili-second unit. The less the value is, the more accuracy

the time is, but the overhead will be bigger.

User Initial function

Specify that function name when need the application initialization process.

User Idle function

Specify that function name when not using standard Idle function of internal kernel but

replacing it with Idol function of user definition.

User header file

When defining pointer to value of macro or variable as extended information of Task and

Cycle Handler, file name of header file which describes external declaration of macro definition

or variable will be specified. In detail, when a file name is specified here, that file will be

included in kernel_cfg.c.

Use FPU *

Choose to use the Floating Point Unit.

Time Event Handler (CSTACK)

Size of Stack area used by Idle and Cyclic Handler is specified in byte unit.

System Handler (HSTACK)

Size of Stack area used by Interrupt and Interrupt Service Routine is specified in byte unit.

Interrupt Service Routine (ISTACK) *

Size of Stack area used by Interrupt Service Routine is specified in byte unit.

*:Is not displayed when the device is not supported.Please refer to “Device dependence

part Manual” for more explanation.

μC3/Compact Users Guide

66
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．2．2 Configuration of Task

When clicking to “Task” of Menu Screen, configuration screen of Task will be displayed,

configuration corresponding to CRE_TSK of Task creating API will be executed.

Menu Screen

Configuration Screen

Tasks

A list of tasks that are currently set will be displayed. Editing screen is displayed by

double-clicking an item in the list.

Add

Screen to add a new task is displayed.

CHAPTER 4 Usage of Configurator

67
Copyright © eForce Co.,Ltd. All Rights Reserved

Task Set Screen

ID Symbol

Please specify optional definition name displaying ID number of Task. This definition name is

macro-defined in kernel_id.h.

Function name

Specify function name of option Task.

Initial Priority

When starting up Task, please specify value of initializing Task Priority Level which is not

exceeding Task Priority Level number of common kernel. When specifying shared stack and

attribute of Restriction Task(TA_RSTR=ON), the same task priority as other tasks which

specified the shared stack will be specified.

Extended information

In case there is extension information which is passing to Task, then specify it, and leave it it

blank if it is unnecessary. In extension information, it is possible to specify numerical value,

value which is macro-defined and pointer to variable. In case of passing pointer to variable,

attach “&” to the beginning of variable name.

μC3/Compact Users Guide

68
Copyright © eForce Co.,Ltd. All Rights Reserved

Ready State (TA_ACT)

When checking, TA_ACT attribute will become ON, and Task is created in possible

execution status.

Restricted task (TA_RSTR)

When checking, TA_RSTR attribute will become ON, and attribute of Restriction Task is

given. When selecting the shared stack which was described later, it will be automatically

checked, but it is possible to remove the check later. In case shared stack is used by various

Tasks, all those Tasks must be either TA_RSTR=ON, or TA_RSTR=OFF.

User mode (TA_USR) *

This function is device dependent.

High-Level (TA_HLNG) / Assembly (TA_ASM)

It will become fixed TA_HLNG, and impossible to change in µC3/Compact.

Stack size

Please specify size of peculiar stack to Task. Select "Use the local stack", will be enabled for

this control.

Use Local Stack / Use Shared stack

Specify whether to use local stack or shared stack. Regarding to field of shared stack, if there

are more than 1 shared stack defined, it will be possible to select “Use Shared stack”.

Shared Stack

Specify ID of shared stack. Select "Use the local stack", will be enabled for this control.

Place in the private section *

This function is device dependent.

*:Is not displayed when the device is not supported.Please refer to “Device dependence

part Manual” for more explanation.

CHAPTER 4 Usage of Configurator

69
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．2．3 Configuration of Semaphore

When clicking to “Semaphore” of Menu Screen, configuration screen of Semaphore will be

displayed for configuration which is corresponding to CRE_SEM of Semaphore creating API.

Menu Screen

Configuration Screen

Semaphores

A list of Semaphores that are currently set will be displayed. Editing screen is displayed by

double-clicking an item in the list.

Add

Screen to add a new Semaphore is displayed.

μC3/Compact Users Guide

70
Copyright © eForce Co.,Ltd. All Rights Reserved

Semaphore Set Screen

ID Symbol

Please specify optional definition name which displays ID number of Semaphore. This

definition name is macro-defined in kernel_id.h.

Initial resource count

Specify initial value of Semaphore count which is not exceeding maximum resource number.

Maximum resource number

Please specify maximum value of Semaphore count. The maximum value which can be

specified is 255.

FIFO order (TA_TFIFO) / Task priority order (TA_TPRI)

It will become fixed TA_TFIFO and impossible to change in µC3/Compact.

CHAPTER 4 Usage of Configurator

71
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．2．4 Configuration of Event Flag

When clicking to “Event Flag” of Menu Screen, configuration screen of Event Flag will be

displayed for configuration which is corresponding to CRE_FLG of Event Flag creating API.

Menu Screen

Configuration Screen

Event Flags

A list of Event Flags that are currently set will be displayed. Editing screen is displayed by

double-clicking an item in the list.

Add

Screen to add a new Event Flag is displayed.

μC3/Compact Users Guide

72
Copyright © eForce Co.,Ltd. All Rights Reserved

Event Flag Set Screen

ID Symbol

Please specify optional definition name which displays ID number of Event Flag. This

definition name is macro-defined in kernel_id.h.

Initial bit pattern (hex)

Please specify initial value of Event Flag by hexadecimal number.

FIFO Order (TA_TFIFO) / Task priority order (TA_TPRI)

It will become fixed TA_TFIFO and impossible to change in µC3/Compact.

No (TA_WSGL) / Yes (TA_WMUL)

By specifying TA_WSGL, waiting of various Tasks will be prohibited. By specifying

TA_WMUL, waiting of various Tasks will be permitted.

Bit pattern is cleared when a task is released (TA_CLR)

If checking, attribute of TA_CLR will be ON, and when Task is released from Event Flag

waiting by a condition approval, all bits of bit pattern are cleared.

CHAPTER 4 Usage of Configurator

73
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．2．5 Configuration of Data Queues

When clicking to “Data Queue” of Menu Screen, configuration screen of Data Queues will be

displayed for configuration which is corresponding to CRE_DTQ of Data Queues creating API.

Menu Screen

Configuration Screen

Event Flags

A list of Data Queues that are currently set will be displayed. Editing screen is displayed by

double-clicking an item in the list.

Add

Screen to add a new Data Queue is displayed.

μC3/Compact Users Guide

74
Copyright © eForce Co.,Ltd. All Rights Reserved

Data Queue Set Screen

ID Symbol

Please specify optional definition name which displays ID number of Data Queue. This

definition name is macro-defined in kernel_id.h.

Queue Depth

Spacify number of Data Queues (number of data).

FIFO Order (TA_TFIFO) / Task priority order (TA_TPRI)

It will become fixed TA_TFIFO, and impossible to change in µC3/Compact.

CHAPTER 4 Usage of Configurator

75
Copyright © eForce Co.,Ltd. All Rights Reserved

4．1．2．6 Configuration of Mailbox

When clicking to “Mailbox” of Menu Screen, configuration screen of Mailbox will be displayed

for configuration which is corresponding to CRE_MBX of Mailbox creating API.

Menu Screen

Configuration Screen

Mailboxes

A list of Mailboxes that are currently set will be displayed. Editing screen is displayed by

double-clicking an item in the list.

Add

Screen to add a new Mailbox is displayed.

μC3/Compact Users Guide

76
Copyright © eForce Co.,Ltd. All Rights Reserved

Mailbox Set Screen

ID Symbol

Please specify optional definition name which displays ID number of Mailbox. This definition

name is macro-defined in kernel_id.h.

FIFO order (TA_TFIFO) / Task priority order (TA_TPRI)

It will become fixed TA_TFIFO and impossible to change in µC3/Compact.

FIFO order (TA_MFIFO) / Message priority order (TA_MPRI)

It will become fixed TA_MFIFO and impossible to change in µC3/Compact.

CHAPTER 4 Usage of Configurator

77
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．2．7 Configuration of Fixed-Sized Memory Pool

When clicking to “Fixed-Sized Memory Pool” of Menu Screen, configuration screen of

Fixed-Sized Memory Pool will be displayed for configuration which is corresponding to

CRE_MPF of Fixed-Sized Memory Pool creating API.

Menu Screen

Configuration Screen

Fixed-Sized Memory Pools

A list of Fixed-Sized Memory Pools that are currently set will be displayed. Editing screen is

displayed by double-clicking an item in the list.

Add

Screen to add a new Fixed-Sized Memory Pool is displayed.

μC3/Compact Users Guide

78
Copyright © eForce Co.,Ltd. All Rights Reserved

Fixed-Sized Memory Pool Set Screen

ID Symbol

Please specify optional definition name which displays ID number of Fixed-Sized Memory

Pool. This definition name is macro-defined in kernel_id.h.

Memory Blocks

Specify number of memory block.

FIFO order (TA_TFIFO) / Task priority order (TA_TPRI)

It will become fixed TA_TFIFO and impossible to change in µC3/Compact.

Specify size (byte)

Specify size of memory block (number of byte).

Other

Specify size of memory block (number of byte) using operator sizeof, and arithmetic

operators. In this case, memory usage is approximate. In addition, it is necessary to specify the

header file structure is defined in the configuration "General" to specify a user-defined

structure.

CHAPTER 4 Usage of Configurator

79
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．2．8 Configuration of Cycle Handler

When clicking to “Cyclic Handler” of Menu Screen, configuration screen of Cycle Handler will

be displayed for configuration which is corresponding to CRE_CYC of Cycle Handler creating

API.

Menu Screen

Configuration Screen

Cyclic Handlers

A list of Cyclic Handlers that are currently set will be displayed. Editing screen is displayed by

double-clicking an item in the list.

Add

Screen to add a new Cyclic Handler is displayed.

μC3/Compact Users Guide

80
Copyright © eForce Co.,Ltd. All Rights Reserved

Cyclic Handler Set Screen

ID Symbol

Please specify optional definition name which displays ID number of Cycle Handler. This

definition name is macro-defined in kernel_id.h.

Function name

Specify function name of optional Cycle Handler.

Extended information

If there is extension information which is passing to Cycle Handler, specify it, or in case of

unnecessary, just leave it in blank. In extension information, it is possible to specify numerical

value, macro-defined value, pointer to variable. If passing pointer to variable, attach “&” to the

beginning of variable name.

Activation Cycle

Starting-up cycle of Cycle Handler is specified by mili-second unit. However, small value

cannot be specified by Tick time.

Activation Phase

Starting-up phase of Cycle Handler is specified by mili-second unit.

High-Level (TA_HLNG) / Assembly (TA_ASM)

CHAPTER 4 Usage of Configurator

81
Copyright © eForce Co.,Ltd. All Rights Reserved

It is impossible to change in µC3/Compact.

Operational State (TA_STA)

If checking and attribute of TA_STA is ON, Cycle Handler is generated by operation status.

Preserve activation phare (TA_PHS)

If checking and attribute of TA_PHS is ON, phase when generating Cycle Handler is saved.

User mode (TA_USR) *

This function is device dependent.

*:Is not displayed when the device is not supported.Please refer to “Device dependence

part Manual” for more explanation.

μC3/Compact Users Guide

82
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．2．9 Configuration of Interrupt Service Routine

When clicking to “Interrupt Service Routine” of Menu Screen, configuration screen of

Interrupt Service Routine will be displayed for configuration which is corresponding to ATT_ISR

of added API of Interrupt Service Routine.

Menu Screen

Configuration Screen

Interrupt Service Routines

A list of Interrupt Service Routines that are currently set will be displayed. Editing screen is

displayed by double-clicking an item in the list.

Add

Screen to add a new Interrupt Service Routine is displayed.

CHAPTER 4 Usage of Configurator

83
Copyright © eForce Co.,Ltd. All Rights Reserved

Interrupt Service Routine Set Screen

Interrupt number

Please specify interrupt number. When configurating various Interrupt Service Routine to the

same interrupt number, calling order will follow order of tab and the more it is on the left, the

faster it will be called.

Function name

Specify function name of optional Interrupt Service Routine.

Extended Information

If there is extension information which is passing to Interrupt Service Routine, specify it, or in

case of unnecessary, just leave it in blank. In extension information, it is possible to specify

numerical value, pointer to variable.

User mode (TA_USR) *

This function is device dependent.

*:Is not displayed when the device is not supported.Please refer to “Device

dependence part Manual” for more explanation.

μC3/Compact Users Guide

84
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．2．10 Configuration of Shared stack

When clicking to “Shared Stack” of Menu Screen, configuration screen of Shared Stack will

be displayed for configuration of Shared Stack.

Menu Screen

Configuration Screen

Shared Stacks

A list of Shared Stacks that are currently set will be displayed. Editing screen is displayed by

double-clicking an item in the list.

Add

Screen to add a new Shared Stack is displayed.

CHAPTER 4 Usage of Configurator

85
Copyright © eForce Co.,Ltd. All Rights Reserved

Shared Stack Set Screen

ID Symbol

Please specify optional definition name which displays ID number of Shared Stack. This

definition name is used to select Shared Stack in configuration screen of Task.

In case there is even 1 Task using this Shared Stack, it will be impossible to change definition

name.

Stack Size

Specify size of Shared Stack (byte number). The Stack size of Task selecting the use of

Shared Stack is fixed to size of Shared Stack. Therefore, Stack size of Task which uses the

most Stack is specified by the Task specifying this Shared Stack.

Deletion

In case there is even 1 Task using that Shared Stack, display warning message and it will be

deleted. In that case, Shared Stack of the Task is changed to “Not use” .

Place in the private section *

This function is device dependent.

*:Is not displayed when the device is not supported.Please refer to “Device

dependence part Manual” for more explanation.

μC3/Compact Users Guide

86
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．2．11 Configuration of Non-Kernel ISR (Interrupt Service Routine)

When clicking to “Non-Kernel ISR” of Menu Screen, configuration screen of Non-Kernel ISR

will be displayed for configuration of Non-Kernel ISR.

Menu Screen

Configuration Screen

Non-Kernel ISRs

A list of Non-Kernel ISRs that are currently set will be displayed. Editing screen is displayed

by double-clicking an item in the list.

Add

Screen to add a new Non-Kernel ISR is displayed.

CHAPTER 4 Usage of Configurator

87
Copyright © eForce Co.,Ltd. All Rights Reserved

Non-Kernel ISR Set Screen

Interrupt number

Please specify interrupt number. Must be interrupt number of Non-Kernel ISR is unique. Can

not register it must be unique interrupt number, including the Non-Kernel ISRs and Interrupt

Service Routines.

Function name

Specify function name of optional Non-Kernel ISR.

μC3/Compact Users Guide

88
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．3 Saving project file

From the Configurator toolbar, click “Save As”, open “name and save screen” specify

saving folder for project file and click “OK” .

Regarding to the saved file, the file that changed project file (default uC3Project.3cf)and

extension to “xml” would be saved.

By opening this file by browser, it is possible to confirm configuration information.

CHAPTER 4 Usage of Configurator

89
Copyright © eForce Co.,Ltd. All Rights Reserved

μC3/Compact Users Guide

90
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．4 Generate source

From the Configurator toolbar, click “Generate Source”, open “screen of referring folder” ,

specify optional folder which deploy to create file and click “OK” .

In case there is already skeleton code main.c existing, previous “main.c” is backed up as

“main.bak”.

CHAPTER 4 Usage of Configurator

91
Copyright © eForce Co.,Ltd. All Rights Reserved

【Recommendation】

In order to prevent skeleton code from being overwritten and deleted, it is recommended not to

directly edit to skeleton code but using template to create application program.

A．Files which are not depended to a surely created processor

File Content

kernel_id.h Defined header file of Object ID or Device ID

kernel_cfg.c Configuration information file of kernel

kernel.h Header file of kernel

main.c Skeleton code such as main(), initially set-up function, Task or

Handler

B．Files which are not depended to a surely created processor

File Content

itron.h Kernel header file

hw_init.c Initialization file that depends on the hardware and devices

hw_dep.h Header file that depends on the hardware and devices

Start up Initialization process by power-on reset (assembly language)

Vector table Interrupt vector table (assembly language)

Exception

Handler

Exception handler, including the interrupt handler (assembly

language)

Kernel lib

C．Files depended on device driver

File Content

I/O defined file Header file defining I/O of processor

DDR_xxxxx.c Source file of device driver

DDR_xxxxx.h Header file of of device driver

DDR_xxxxx_cfg.h Configuration file of of device driver

These created files are different according to configuration or processor or device.

μC3/Compact Users Guide

92
Copyright © eForce Co.,Ltd. All Rights Reserved

4．2．5 Error check when creating source

When creating source, the following items will be checked. In case there is some problem,

error message will be displayed and file will not be created.

 Check items which must not empty ID or function name.

 Check scope of total ID.

 Check scope of Task Priority Level.

 Check relation of Task Priority Level and Restriction Task attribute among Tasks which

use Stack in common.

 Check scope of initial value of Semaphore.

 Check scope of start-up cycle of Cycle Handler.

4．1．5．1 Total ID

All Object ID, including ID used in RTOS which user cannot see, will be managed by unique

8-bit value. Therefore, maximum of total ID will be 255, and number which can create Object

will become less than 255.

Total ID is calculated like following formula:

 Upper limit of Task Priority Level

 Number of Shared Stack

 Number of Task

 Number of Semaphore

 Number of Eventflag

 Number of Mailbox

 Double number of Data Queues

 Number of Fixed-Sized memory pool

 ＋) Number of Cycle Handler

───────────────────────

 Total ID

【Complement】

In the evaluation edition of µC3/Compact, total ID is limited to 16.

CHAPTER 4 Usage of Configurator

93
Copyright © eForce Co.,Ltd. All Rights Reserved

CHAPTER 5 Explanation of System Call

94
Copyright © eForce Co.,Ltd. All Rights Reserved

CHAPTER 5 Explanation of System Call

5．1 Task Management Functions

act_tsk Activate Task

iact_tsk

【Format】

 ER ercd = act_tsk (ID tskid) ;

 ER ercd = iact_tsk (ID tskid) ;

【Parameter】

 ID tskid ID number of Task starting-up

【Return value】

 ER ercd Successful completion (E_OK)or Error code

【Error code】

 E_ID Incorrect ID number(tskid is incorrect or cannot be used)

 E_QOVR Queuing overflow(Overflow of queuing number required for start-up)

【Call Context】 act_tsk iact_tsk

 Task Possible Possible

 Time Event Handler Possible Possible

 Interrupt Service Routine Possible Possible

【Explanation】

Start-up Task which is specified by tskid. Concretely, target task is changed from dormant to

ready status. Extension information of Task is passed as parameter when starting-up Task.

When the target Task is not in dormant status, Task start-up request will be in queuing.

Specifically, 1 will be added to queuing number of Task start-up request. However, when adding

1 to queuing number of Task start-up request and if it exceeds maximum value of queuing

number of Task start-up request, it will return to E_QOVR error.

In tskid, definition name of Task ID, which has been created by configurator, is used and

specified.

Also, when specifying TSK_SELF(＝0), local Task will be made as target Task. However, when

it is specified by a call from Non-Task Context, it will return to E_ID error.

【Recommendation】

Because act_tsk and iact_tsk of µC3/Compact are mounted as the same System Call, it does

not relate to Call Context but it is possible to use in the same way. However, it is recommended

to use act_tsk in case of calling from Task Context, and act_tsk in other cases.

CHAPTER 5 Explanation of System Call

95
Copyright © eForce Co.,Ltd. All Rights Reserved

μC3/Compact Users Guide

96
Copyright © eForce Co.,Ltd. All Rights Reserved

can_act Cancel Task Activation requests

【Format】

 ER_UINT actcnt = can_act (ID tskid) ;

【Parameter】

 ID tskid ID number of Cancel Task start-up request

【Return value】

 ER_UINT actcnt Frequency of start-up request in queuing(Positive

value or 0)or Error Code

【Error Code】

 E_ID Incorrect ID number(tskidis incorrect or cannot be used)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

For Task specified by tskid, clear queuing number of start-up request, and return to Start-up

request queuing number which is before clearing.

In tskid, definition name of Task ID, which has been created by configurator, is used and

specified. Also, when specifying TSK_SELF(＝0), local Task will be made as target Task.

However, when it is specified by a call from Non-Task Context, it will return to E_ID Error.

CHAPTER 5 Explanation of System Call

97
Copyright © eForce Co.,Ltd. All Rights Reserved

sta_tsk Activate Task(with a Start Code)

【Format】

 ER ercd = sta_tsk (ID tskid, VP_INT stacd) ;

【Parameter】

 ID tskid ID number of Task start-up

 VP_INT stacd Task start-up code

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(tskid is incorrect or cannot be used)

 E_OBJ Object status Error(The target Task is not in dormant status or it is

using Shared Stack)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Possible

【Explanation】

Start-up Task which is specified by tskid. Concretely, target task is changed from dormant to

ready status. Start-up code(stacd)is passed as parameter when starting-up Task.

In case the target Task is not in dormant status, Task will not be in start-up request queuing

but returned to E_OBJ Error. Even in the case when the target Task specifies Shared Stack, it

will be returned to E_OBJ Error.

In tskid, definition name of Task ID, which has been created by configurator, is used and

specified.

【Recommendation 】

sta_tsk exists for compatibility with the µITRON3.0 specification. In µC3／Compact, there is

limit when using Shared Stack, and it is recommended not to use sta_tsk but use

act_tsk,iact_tsk.

μC3/Compact Users Guide

98
Copyright © eForce Co.,Ltd. All Rights Reserved

ext_tsk Terminate Invoking Task

【Format】

 void ext_tsk () ;

【Parameter】

 No

【Return value】

 No

【Call Context】

 Task Possible

 Time Event Handler Impossible

 Interrupt Service Routine Impossible

【Explanation】

Terminate the invoking Task. Concretely, the invokingTask will be changed from execution

status to dormant status. In case Start-up request queuing number of the invoking Task is more

than 1, subtract 1 from Start-up request queuing number and change the invoking Task to

possible execution status. In this time, initialization of Task Priority Level as well as wake-up

counter number are also cleared, and stack pointer is initialized as a process for starting up

Task. Extension information of Task is passed as parameter when starting-up Task.

In case it is called from Task Context, there will be no return from this System Call. However,

in case it is called from Non-Task Context, it will return without returning Error Code.

CHAPTER 5 Explanation of System Call

99
Copyright © eForce Co.,Ltd. All Rights Reserved

ter_tsk Terminate Task

【Format】

 ER_ercd = ter_tsk (ID tskid) ;

【Parameter】

 ID tskid ID number of Terminate Task

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(tskidis incorrect or cannot be used)

 E_ILUSE System Call is used incorrectly(the target Task is local Task)

 E_OBJ Object status error(the target Task is in dormant status)

【Call Context】

 Task Possible

 Time Event Handler Impossible

 Interrupt Service Routine Impossible

【Explanation】

Task which is specified by tskid is forcedly changed to dormant status.

In case there is more than 1 Start-up request queuing number of the target Task, subtract 1

from Start-up request queuing number and change it to possible execution status. In this time,

initialization of Task Priority Level as well as wake-up counter number are also cleared, and

stack pointer is initialized as a process for starting up Task. Extension information of Task is

passed as parameter when starting-up Task.

When it is in dormant status, the target Task will return E_OBJError. Also, this System Call is

impossible to end local Task. In case of local Task, the target Task will return E_ILUSE Error.

In tskid, definition name of Task ID, which has been created by configurator, is used and

specified.

μC3/Compact Users Guide

100
Copyright © eForce Co.,Ltd. All Rights Reserved

chg_pri Change Task Priority

【Format】

 ER_ercd = chg_pri (ID tskid, PRI tskpri) ;

【Parameter】

 ID tskid ID number of Task to be changed

 PRI tskpri Base Priority Level after change

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(tskidis incorrect or cannot be used)

 E_NOSPT The target Task is Restriction Task attribute.

 E_PAR ParameterError(tskpri is incorrect)

 E_OBJ Object status error(The target Task isin dormant status)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

The Current Priority of Task specified by tskid to a value specified by tskpri. In tskid, definition

name of Task ID, which has been created by configurator, is used and specified. If

TSK_SELF(＝0)is specified to tskid, the invlokingTask will be the target Task. Also, if

TPRI_INI(＝0)is specified to tskpri, the Current Priority Level of the target Task will be changed

to Priority Level when starting up Task.

When the target Task is in runnable state, Priority Order of Task will be changed according to

Priority Level after change. In Tasks which have the same priority Level as the Priority Level

after change, Priority Order of the target Task will be the lowest.

get_pri Reference Task Priority

CHAPTER 5 Explanation of System Call

101
Copyright © eForce Co.,Ltd. All Rights Reserved

【Format】

 ER_ercd = get_pri (ID tskid, PRI *p_tskpri) ;

【Parameter】

 ID tskid ID number of the task to reference

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 PRI tskpri The Current Priority Level of Task

【Error Code】

 E_ID Incorrect ID number(tskidis incorrect or cannot be used)

 E_OBJ Object status error(the target Task is in dormant status)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

Refer to the Current Priority Level of Task specified by tskid and return to tskpri.

In tskid, definition name of Task ID, which has been created by configurator, is used and

specified. If TSK_SELF(＝0)is specified to tskid, local Task will be the target Task.

【Usage】

PRI tskpri; /*Secure area storing the Current Priority Level of Task */

ER ercd;

 /* Make pointer to storing area to become Parameter and call it */

ercd = get_pri(ID_Task1, &tskpri);

μC3/Compact Users Guide

102
Copyright © eForce Co.,Ltd. All Rights Reserved

ref_tsk Reference Task status

【Format】

 ER ercd = ref_tsk(ID tskid, T_RTSK *pk_rtsk) ;

【Parameter】

 ID Tskid ID number of the task to be referenced

 T_RTSK * pk_rtsk Pointer to packet returning status of Task

【Return value】

 ER Ercd Successful completion(E_OK)or Error Code

 Content of pk_rtsk(T_RTSK type)

 STAT Tskstat Task status

 PRI Tskpri The Current Priority Level of Task

 PRI Tskbpri Base Priority Level of Task

 STAT Tskwait Waiting factor

 ID Wobjid ID number of waiting Object

 TMO Lefttmo Time till time-out

 UINT Actcnt Start-up request queuing number

 UINT Wupcnt Wake-up request queuing number

 UINT Suscnt Forced waiting request nest number(µC3/Compact

has not been corresponding yet)

【Error Code】

 E_ID Incorrect ID number(tskidis incorrect or cannot be used)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

Refer to status relating to Task specified by tskid, return to packet specified by papk_rtsk.

In tskstat, either of the following value will be returned basing on the target Task status.

TTS_RUN 0x01 Execution status

TTS_RDY 0x02 possible execution status

TTS_WAI 0x04 Waiting status

TTS_DMT 0x10 Dormant status

In case the target Task is not in dormant status, return the Current Priority Level of Task to

CHAPTER 5 Explanation of System Call

103
Copyright © eForce Co.,Ltd. All Rights Reserved

tskpri, and Base Priority Level to tskbpri. In µC3/Compact, normally, the Current Priority Level

and Base Priority Level are the same. When the target Task is in dormant status, irregular value

will be returned.

In tskwait of the case when the target Task is in waiting status, it will return either of the

following value based on factor which is becoming waiting status of the target Task. In case the

target Task is not in waiting status, an irregular value will be returned.

TTW_SLP 0x0001 Wake-up waiting status

TTW_DLY 0c0002 Time-passing waiting status

TTW_SEM 0x0004 Waiting status of acquiring Semaphore resource

TTW_FLG 0x0008 Eventflag waiting status

TTW_SDTQ 0x0010 Waiting status of transmission to Data Queues

TTW_RDTQ 0x0020 Waiting status of receiving from Data Queues

TTW_MBX 0x0040 Waiting status of receiving from Mailbox

TTW_MPF 0x2000 Waiting status of acquiring Fixed-Sized memory block

In wobjid when the target Task is in waiting status but it is not in either wake-up waiting status

or time-passing waiting status, then ID number of waiting Object will be returned. An irregular

value will be returned to wobjid in other cases.

In lefttmo when the target Task is in waiting status but not in time-passing waiting status, time

which is till the target Task becoming time-out will be returned. Concretely, a value reducing the

present time from time which become time-out is returned. However, the value returned to

lefttmo will become time secured till time-out, and infact, it will be smaller than time till time-out.

Therefore, it will return 0 to lefttmo in case time-out is made by the next Time Tick. When the

target Task is in waiting status by permanent waiting (without time-out), it will return TMO_FEVR

to lefttmo. An irregular value will be returned to lefttmo of the case which the target Task is not in

waiting status or in time-passing waiting status.

Start-up request queuing number of the target Task is returned to actcnt.

When the target Task is not in dormant status, wake-up request queuing number is returned

to wupcnt, and forced waiting request nest number is returned to suscnt. An irregular value is

returned in case the target Task is in dormant status.

In tskid, definition name of Task ID, which has been created by configurator, is used and

specified. If TSK_SELF(＝0)is specified to tskid, local Task will be the target Task.

【Usage】

T_RTSK rtsk; /* Secure area which is storing Task status */

ER ercd;

 /* Make pointer to storing area to become Parameter and call it */

ercd = ref_tsk (ID_Task1, & rtsk);

μC3/Compact Users Guide

104
Copyright © eForce Co.,Ltd. All Rights Reserved

ref_tst ReferenceTask status(simple edition)

【Format】

 ER ercd = ref_tst(ID tskid, T_RTST *pk_rtst) ;

【Parameter】

 ID Tskid ID number of the task to be referenced

 T_RTST * pk_rtst Pointer to packet returning the Task status

【Return value】

 ER Ercd Successful completion(E_OK)or Error Code

 Content of pk_rtst(T_RTST type)

 STAT tskstat Task status

 STAT tskwait Waiting factor

【Error Code】

 E_ID Incorrect ID number(tskid is incorrect or cannot be used)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

Refer to the lowest status relating to Task which is specified by tskid, and return to packet

specified by pk_rtst.

This System Call is a simple edition of ref_tsk. In tskstat and tskwait, a same value with the

one returned by ref_tsk will be returned.

In tskid, definition name of Task ID, which has been created by configurator, is used and

specified. If TSK_SELF(＝0)is specified to tskid, local Task will be the target Task.

CHAPTER 5 Explanation of System Call

105
Copyright © eForce Co.,Ltd. All Rights Reserved

5．2 Task Dependent Synchronization Functions

slp_tsk Put Task to Sleep

tslp_tsk Put Task to Sleep(with timeout)

【Format】

 ER ercd = slp_tsk () ;

 ER ercd = tslp_tsk (TMO tmout) ;

【Parameter】

 TMO Tmout Specify time-out(only tslp_tsk)

【Return value】

 ER Ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_RLWAI Compulsive release of waiting status(Receive rel_wai while in waiting

status)

 E_TMOUT Polling failure or time-out(tslp_tsk)

【Call Context】 slp_tsk tslp_tsk

 Task Possible Possible

 Time Event Handler Impossible Impossible

 Interrupt Service Routine Impossible Impossible

【Explanation】

Change local Task to get-up waiting status. However, in case there is more than 1 get-up

request queuing number of local Task, subtract 1 from get-up request queuing number, and

keep executing without changing local Task to waiting status.

tslp_tsk is System Call which added time-out function to slp_tsk. Also, it is possible to specify

TMO_POL(＝0)or TMO_FEVR(＝－1)to tmout. In µC3/Compact, tslp_tsk which specifies

TMO_FEVR to tmout will be used as slp_tsk.

μC3/Compact Users Guide

106
Copyright © eForce Co.,Ltd. All Rights Reserved

wup_tsk Wake up Task

iwup_tsk

【Format】

 ER ercd = wup_tsk (ID tskid) ;

 ER ercd = iwup_tsk (ID tskid) ;

【Parameter】

 ID tskid ID number of get-up Task

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(tskidis incorrect or cannot be used)

 E_OBJ Object status error(the target Task is in dormant status)

 E_QOVR Queuing overflow(Overflow of wake-up request queuing number)

【Call Context】 wup_tsk iwup_tsk

 Task Possible Possible

 Time Event Handler Possible Possible

 Interrupt Service Routine Possible Possible

【Explanation】

Task specified by tskid will be released from wake-up request waiting status. E_OK will be

returned to the Task which has been released from waiting as a return value of System Call in

waiting status. In case the target Task is not either in wake-up request waiting status or dormant

status, add 1 to wake-up request queuing number of Task. However, when adding 1 to wake-up

request queuing number of Task and if it is exceeding maximum value of wake-up request

queuing number, then E_QOVRError will be returned. Also, when it is in dormant status, it will

become E_OBJError.

In tskid, definition name of Task ID, which has been created by configurator, is used and

specified. If TSK_SELF(＝0)is specified to tskid, local Task will be the target Task. However,

when it is specified by a call from Non-Task Context, E_IDError will be returned.

【Recommendation 】

Because wup_tsk and iwup_tsk of µC3/Compact are mounted as the same System Call, so it

can be the same Usage, regardless Call Context. However, in case of calling from Task Context,

it is recommended to use wup_tsk, or use iwup_tsk in other cases.

CHAPTER 5 Explanation of System Call

107
Copyright © eForce Co.,Ltd. All Rights Reserved

can_wup Cancel Task wakeup requests

【Format】

 ER_UINT wupcnt = can_wup (ID tskid) ;

【Parameter】

 ID Tskid ID number of Task for wake-up request cancel

【Return value】

 ER_UINT Wupcnt Frequency of wake-up request in queuing(positive

value or 0)or Error Code

【Error Code】

 E_ID Incorrect ID number(tskidis incorrect or cannot be used)

 E_OBJ Object status error(the target Task is in dormant status)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

For Task specified by tskid, clear queuing number of wake-up request, and return to Wake-up

request queuing number which is before clearing.

In tskid, definition name of Task ID, which has been created by configurator, is used and

specified. If TSK_SELF(＝0)is specified to tskid, local Task will be the target Task.

μC3/Compact Users Guide

108
Copyright © eForce Co.,Ltd. All Rights Reserved

rel_wai Release Task from Waiting

irel_wai

【Format】

 ER ercd = rel_wai (ID tskid) ;

 ER ercd = irel_wai (ID tskid) ;

【Parameter】

 ID tskid ID number of Task which is for compulsive release of

waiting status

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(tskidis incorrect or cannot be used)

 E_OBJ Object status error(when the target Task is not in waiting status)

【Call Context】 rel_wai irel_wai

 Task Possible Possible

 Time Event Handler Possible Possible

 Interrupt Service Routine Possible Possible

【Explanation】

When Task specified by tskid is in waiting status, it will be forcedly changed to possible

execution status. In the Task which has been released from waiting by this System Call,

E_RLWAIError will be returned as a return value of System Call in waiting status. In case the

target Task is not in waiting status, E_OBJError will be returned.

In tskid, definition name of Task ID, which has been created by configurator, is used and

specified.

【Recommendation 】

Because rel_wai and irel_wai of µC3/Compact are mounted as the same System Call, so it

can be the same Usage, regardless Call Context. However, in case of calling from Task Context,

it is recommended to use rel_wai, or use irel_wai in other cases.

dly_tsk Delay Task

CHAPTER 5 Explanation of System Call

109
Copyright © eForce Co.,Ltd. All Rights Reserved

【Format】

 ER ercd = dly_tsk (RELTIM dlytim) ;

【Parameter】

 RELTIM Dlytim Amount of time to delay the invoking task(relative

time)

【Return value】

 ER Ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_RLWAI Compulsive release of waiting status(receive rel_wai in waiting status)

【Call Context】

 Task Possible

 Time Event Handler Impossible

 Interrupt Service Routine Impossible

【Explanation】

This service call delays the execution of the invoking task for the amount of time specified in

dlytim. When the task is released from waiting after the relative time expires, the service call

completes and returns E_OK.

μC3/Compact Users Guide

110
Copyright © eForce Co.,Ltd. All Rights Reserved

5．3 Synchronization and Communication Functions

5．3．1 Semaphores

sig_sem Release Semaphore resource

isig_sem

【Format】

 ER ercd = sig_sem(ID semid) ;

 ER ercd = isig_sem(ID semid) ;

【Parameter】

 ID semid ID number of Semaphore resource return

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(semid is incorrect or cannot be used)

 E_QOVR Queuing overflow(return when maximum resource number is

exceeded)

【Call Context】 sig_sem isig_sem

 Task Possible Possible

 Time Event Handler Possible Possible

 Interrupt Service Routine Possible Possible

【Explanation】

When there is Task which is waiting to acquire rsource for Semaphore specified by semid,

then release the Task waiting at the beginning in the waiting queue and change it to possible

execution status. At this time, resource number of the target Semaphore is not changed. Also,

return E_OK to Task which has been released from waiting as a return value of System Call in

waiting status. In case there is not Task waiting for acquiring resource, add 1 to resource

number of the target Semaphore. When adding 1 to resource number of Semaphore and if it

exceeds maximum resource number of Semaphore, then return E_QOVRError.

In semid, definition name of Semaphore ID created by configurator is used and specified.

【Recommendation 】

Because sig_sem and isig_sem of µC3/Compact are mounted as the same System Call, so it

can be the same Usage, regardless Call Context. However, in case of calling from Task Context,

it is recommended to use sig_sem, or use isig_sem in other cases.

CHAPTER 5 Explanation of System Call

111
Copyright © eForce Co.,Ltd. All Rights Reserved

μC3/Compact Users Guide

112
Copyright © eForce Co.,Ltd. All Rights Reserved

wai_sem Acquire Semaphore resource

pol_sem Acquire Semaphore resource(Polling)

twai_sem Acquire Semaphore resource(With time-out)

【Format】

 ER ercd = wai_sem(ID semid) ;

 ER ercd = pol_sem(ID semid) ;

 ER ercd = twai_sem(ID semid, TMO tmout) ;

【Parameter】

 ID Semid ID number of Semaphore resource acquisition

 TMO Tmout Specify time-out(only twai_sem)

【Return value】

 ER Ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(semidis incorrect or cannot be used)

 E_PAR ParameterError(tmout is incorrect；only twai_sem)

 E_RLWAI Compulsive release of waiting status(receive rel_wai in waiting

status；other than pol_sem)

 E_TMOUT Polling failure or time-out(other than wai_sem)

【Call Context】 wai_sem pol_sem twai_sem

 Task Possible Possible Possible

 Time Event Handler Impossible Possible Impossible

 Interrupt Service Routine Impossible Impossible Impossible

【Explanation】

Acquire 1 resource from Semaphore specified by semid. In case there is more than 1

Semaphore resource number, then subtract 1 from Semaphore resource number so that it will

not be in waiting status and end System Call. When Semaphore resource number is 0, leave

the resource number in 0, connect to waiting queue of local Task, and change it to Semaphore

resource acquisition waiting status. When other Tasks are already in waiting queue, it will be

connected to the last of waiting queue of local Task.

pol_sem is System Call running process of wai_sem by pooling, and twai_sem is System Call

which is added time-out function to wai_sem. Also, it is possible to specify TMO_POL(＝0)or

TMO_FEVR(＝-1)to tmout. In µC3/Compact, twai_sem specifying TMO_FEVR to tmout is

used as wai_sem, and twai_sem specifying TMO_POL to tmout is used as pol_sem.

In semid, definition name of Semaphore ID created by configurator is used and specified.

μC3/Compact Users Guide

113
Copyright © eForce Co.,Ltd. All Rights Reserved

ref_sem Reference Semaphore state

【Format】

 ER ercd = ref_sem(ID semid, T_RSEM *pk_rsem) ;

【Parameter】

 ID semid ID number of Semaphore for refering status

 T_RSEM* pk_rsem Pointer to packet which returns Semaphore status

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 Content of pk_rsem(T_RSEM type)

 ID wtskid ID number of Task in the beginning of waiting queue of

Semaphore

 UINT semcnt The present resource number of Semaphore

【Error Code】

 E_ID Incorrect ID number(semidis incorrect or cannot be used)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

Refer status of Semaphore specified by semid and return to packet specified by pk_rsem.

Return ID number of Task in the beginning of Semaphore waiting queue to wtskid. In case

there is no Task waiting for resource acquisition, return TSK_NONE(＝0).

Return the present resource number of Semaphore to semcnt.

In semid, definition name of Semaphore ID created by configurator is used and specified.

μC3/Compact Users Guide

114
Copyright © eForce Co.,Ltd. All Rights Reserved

5．3．2 Eventflags

set_flg Set Eventflag

iset_flg

【Format】

 ER ercd = set_flg(ID flgid, FLGPTN setptn) ;

 ER ercd = iset_flg(ID flgid, FLGPTN setptn) ;

【Parameter】

 ID flgid ID number of Eventflag for setting

 FLGPTN setptn Set bit pattern

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(flgid is incorrect or cannot be used)

 E_PAR ParameterError(setptn is incorrect)

【Call Context】 set_flg iset_flg

 Task Possible Possible

 Time Event Handler Possible Possible

 Interrupt Service Routine Possible Possible

【Explanation】

Bit pattern of Eventflag specified by flgid will be updated by bit pattern before calling System

Call, and logical disjunction (OR)of each bit of setptn value. Update bit pattern of Eventflag and

search to see if waiting release condition, which is in order from Task of the beginning of

Eventflag’s waiting queue, is satisfied or not, and when a Task satisfying waiting release

condition is found, that Task will be released from waiting. Besides, return E_OK as a return

value of System Call in waiting status to the Task which has been released from waiting. At this

time, if there is TA_CLR attribute specified in Eventflag attribute, then clear all bits in bit pattern

of Eventflag, and end process of System Call. In case there is no TA_CLRattribute specified,

keep searching for waiting queue.

flgid uses and specifies definition name of Eventflag ID which is created by configurator.

【Recommendation 】

Because set_flg and iset_flg of µC3/Compact are mounted as the same System Call, so it

can be the same Usage, regardless Call Context. However, in case of calling from Task Context,

it is recommended to use set_flg, or use iset_flg in other cases.

μC3/Compact Users Guide

115
Copyright © eForce Co.,Ltd. All Rights Reserved

clr_flg Clear Eventflag

【Format】

 ER ercd = clr_flg(ID flgid, FLGPTN clrptn) ;

【Parameter】

 ID flgid ID number of the set Eventflag

 FLGPTN clrptn The cleared bit pattern(Reversing value of each bit)

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(flgidis incorrect or cannot be used)

 E_NOEXS Object which has not been created(Eventflag is unregistered)

 E_PAR ParameterError(clrptn is incorrect)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

Bit pattern of Eventflag specified by flgid is updated by bit pattern before calling System Call

and logical junction (AND) of each bit of clrptn value.

In flgid, definition name of Eventflag ID which is created by configurator is used and specified.

【Usage】

ER ercd;

 /* Make value which set to 0 for only cleared bit as Parameter and call it */

ercd = clr_flg(ID_Flag1, ~0x0001);

μC3/Compact Users Guide

116
Copyright © eForce Co.,Ltd. All Rights Reserved

wai_flg Waiting Eventflag

pol_flg Waiting Eventflag(Polling)

twai_flg Waiting Eventflag(with time-out)

【Format】

 ER ercd = wai_flg(ID flgid, FLGPTN waiptn, MODE wfmode,

 FLGPTN *p_flgptn) ;

 ER ercd = pol_flg(ID flgid, FLGPTN waiptn, MODE wfmode,

 FLGPTN *p_flgptn) ;

 ER ercd = twai_flg(ID flgid, FLGPTN waiptn, MODE wfmode,

 FLGPTN *pflgptn, TMO tmout) ;

【Parameter】

 ID flgid ID number of waiting Eventflag

 FLGPTN waiptn Waiting bit pattern

 MODE wfmode Waiting mode

 TMO tmout Specify time-out(only twai_flg)

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 FLGPTN flgptn Bit pattern when release waiting

【Error Code】

 E_ID Incorrect ID number(flgidis incorrect or cannot be used)

 E_PAR ParameterError(waiptn, wfmode is incorrect)

 E_ILUSE System Call is used incorrectly(with waiting Task by Eventflag

specified by TA_WSGL attribute)

 E_RLWAI Compulsive release of waiting status(receive rel_wai in waiting

status；other than pol_flg)

 E_TMOUT Polling failure or time-out(other than wai_flg)

【Call Context】 wai_flg pol_flg twai_flg

 Task Possible Possible Possible

 Time Event Handler Impossible Possible Impossible

 Interrupt Service Routine Impossible Impossible Impossible

【Explanation】

If bit pattern of Eventflag specified by flgid is not satisfied to waiting release condition

specified by waiptn and wfmode, connect it to waiting queue till it satisfies the condition, and

change to Eventflag waiting status. In case it satisfies the waiting release condition specified by

CHAPTER 5 Explanation of System Call

117
Copyright © eForce Co.,Ltd. All Rights Reserved

waiptn and wfmode, end process of System Call without making local Task to waiting status,

and return bit pattern which satisfied waiting status to flgptn. At this time, if TA_CLR attribute is

specified to Eventflag attribute, then clear all bits of bit pattern of Eventflag.

When TA_WSGL attribute is specified to Eventflag attribute and other Task is connected to

waiting queue of Eventflag, it will become E_ILUSEError, regardless condition of waiting

release.

In wfmode, it is possible to specify either TWF_ANDW or TWF_ORW. The waiting release

condition specified by waiptn and wfmode is a condition when all bits specified by waiptn of

bit pattern of Eventflag is ser in case TWF_ANDW is specified in wfmode. If TWF_ORW is

specified, it is a condition when either bit specified by waiptn of bit pattern of Eventflag is set.

pol_flg is a System Call running process of wai_flg by polling, and twai_flg is a System Call

which is added time-out function to wai_flg. Also, it is possible to specify TMO_POL(＝0)or

TMO_FEVR(＝-1)to tmout. In µC3/Compact, twai_flg which specifies TMO_FEVR to tmout is

used as wai_flg, and twai_flg which specifies TMO_POL to tmout is used as pol_flg.

In flgid, definition name of Eventflag ID which is created by configurator is used and specified.

【Usage】

FLGPTN waiptn; /* Secure area storing Flag pattern */

ER ercd;

 /* Make pointer to storing area to become Parameter and call it */

ercd = wai_flg(ID_Flag1, 0x0003, TWF_ORW, &waiptn);

if (ercd == E_OK) {

 if ((waiptn & 0x0001) != 0) {

 ercd = clr_flg(ID_Flag1, ~0x0001);

 }

}

ref_flg Refer status of Eventflag

μC3/Compact Users Guide

118
Copyright © eForce Co.,Ltd. All Rights Reserved

【Format】

 ER ercd = ref_fig(ID flgid, T_RFLG *pk_rflg) ;

【Parameter】

 ID flgid ID number of refering status of Eventflag

 T_RFLG* pk_rflg Pointer to packet which returns Eventflag status

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 Content of pk_rflg(T_RFLG type)

 ID wtskid ID number of Task in the beginning of waiting queue of

Eventflag

 FLGPTN flgptn The present bit pattern of Eventflag

【Error Code】

 E_ID Incorrect ID number(flgidis incorrect or cannot be used)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

Refer status of Eventflag specified by flgid, and return packet specified by pk_rflg.

In wtskid, return ID number of Task in the beginning of waiting queue of Eventflag. In case

there is not Task waiting for Event, TSK_NONE(＝0)will be returned.

In flgptn, the present bit pattern of Eventflag will be returned.

In flgid, definition name of Eventflag ID which is created by configurator is used and specified.

μC3/Compact Users Guide

119
Copyright © eForce Co.,Ltd. All Rights Reserved

5．3．3 Data Queues

snd_dtq Send to Data Queue

psnd_dtq Send to Data Queue (Polling)

ipsnd_dtq

tsnd_dtq Send to Data Queue (with time-out)

【Format】

 ER ercd = snd_dtq(ID dtqid, VP_INT data) ;

 ER ercd = psnd_dtq(ID dtqid, VP_INT data) ;

 ER ercd = ipsnd_dtq(ID dtqid, VP_INT data) ;

 ER ercd = tsnd_dtq(ID dtqid, VP_INT data, TMO tmout)

【Parameter】

 ID dtqid ID number of Data Queues for transmission

 VP_INT data Data sent to Data Queues

 TMO tmout Specify time-out(only tsnd_dtq)

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(dtqidis incorrect or cannot be used)

 E_RLWAI Compulsive release of waiting status(Receive rel_wai in waiting

status；only snd_dtq, tsnd_dtq)

 E_TMOUT Polling failure or time-out(other than snd_dtq)

【Call Context】 snd_dtq psnd_dtq ipsnd_dtq tsnd_dtq

 Task Possible Possible Possible Possible

 Time Event Handler Impossible Possible Possible Impossible

 Interrupt Service Routine Impossible Possible Possible Impossible

【Explanation】

When there is Task waiting for receiving to Data Queues specified by dtqid, pass data

sending to the Task in the beginning of receiving-waiting queue, and release waiting for that

Task. Besides, return E_OK to the Task which has been released from waiting as a return value

of System Call in waiting status, and return data value as data received from Data Queues. In

case there is no Task waiting for receiving, put sending data to the end of Data Queues. If there

is no space in Data Queues area, connect local Task to sending-waiting queue and change it to

sending-waiting status to Data Queues.

In case there is no Task in psnd_dtq and ipsnd_dtq waiting for receiving to Data Queues, and

μC3/Compact Users Guide

120
Copyright © eForce Co.,Ltd. All Rights Reserved

there is no space in Data Queues area, then return E_TMOUTError.

psnd_dtq and ipsnd_dtq is System Call running process of snd_dtq by polling, and tsnd_dtq

is System Call which added time-out function to snd_dtq. Also, it is possible to specify

TMO_POL(＝ 0)or TMO_FEVR(＝－ 1)to tmout. In µC3/Compact, tsnd_dtq specifying

TMO_FEVR to tmout is used as snd_dtq, and tsnd_dtq specifying TMO_POL to tmout is used

as psnd_dtq.

In dtqid, definition name of Data Queues ID which is created by configurator is used and

specified.

【Recommendation 】

Because psnd_dtq and ipsnd_dtq of µC3/Compact are mounted as the same System Call, so

it can be the same Usage, regardless Call Context. However, in case of calling from Task

Context, it is recommended to use psnd_dtq, or use ipsnd_dtq in other cases.

fsnd_dtq Forced Send to Data Queue

ifsnd_dtq

CHAPTER 5 Explanation of System Call

121
Copyright © eForce Co.,Ltd. All Rights Reserved

【Format】

 ER ercd = fsnd_dtq(ID dtqid, VP_INT data) ;

 ER ercd = ifsnd_dtq(ID dtqid, VP_INT data) ;

【Parameter】

 ID dtqid ID number of Data Queues transmission

 VP_INT data Data sent to Data Queues

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(dtqidis incorrect or cannot be used)

 E_ILUSE System Call is used incorrectly(Capacity of Data Queues area of the

target Data Queues is 0)

【Call Context】 fsnd_dtq ifsnd_dtq

 Task Possible Possible

 Time Event Handler Possible Possible

 Interrupt Service Routine Possible Possible

【Explanation】

When there is Task waiting for receiving by Data Queues specified by dtqid, pass sending

data to Task in the beginning of receiving-waiting queue, and release that Task from waiting

status. Also, return E_OK as return value of System Call in waiting status to the Task which has

been released from waiting, and return data value as data received from Data Queues. In case

there is no Task in waiting for receiving, then put sending data to the end of Data Queues. Here,

if there is no space in Data Queues area, then delete the beginning data of Data Queues,

secure necessary area for Data Queues, and put sending data to the end of Data Queues. In

other words, the oldest data is deleted. In these System Calls, when compulsive transmission of

data is tried form Data Queues in which capacity of Data Queues area is 0, it will return

E_ILUSEError.

In dtqid, definition name of Data Queues ID which is created by configurator is used and

specified.

【Recommendation 】

Because fsnd_dtq and ifsnd_dtq µC3/Compact are mounted as the same System Call, so it

can be the same Usage, regardless Call Context. However, in case of calling from Task Context,

it is recommended to use fsnd_dtq, or use ifsnd_dtq in other cases.

μC3/Compact Users Guide

122
Copyright © eForce Co.,Ltd. All Rights Reserved

rcv_dtq Receive from Data Queue

prcv_dtq Receive from Data Queue(Polling)

trcv_dtq Receive from Data Queue(with time-out)

【Format】

 ER ercd = rcv_dtq(ID dtqid, VP_INT *p_data) ;

 ER ercd = prcv_dtq(ID dtqid, VP_INT *p_data) ;

 ER ercd = trcv_dtq(ID dtqid, VP_INT *p_data, TMO tmout) ;

【Parameter】

 ID dtqid ID number of receiving target of Data Queues

 TMO tmout Specify time-out(only trcv_dtq)

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 VP_INT data Data received from Data Queues

【Error Code】

 E_ID Incorrect ID number(dtqid is incorrect or cannot be used)

 E_RLWAI Compulsive release of waiting status(Receive rel_wai in waiting

status；other than prcv_dtq)

 E_TMOUT Polling failure or time-out(other than rcv_dtq)

【Call Context】 rcv_dtq prcv_dtq trcv_dtq

 Task
Possible

Possibl

e
Possible

 Time Event Handler
Possible

Possibl

e

Impossible

 Interrupt Service Routine Impossible Impossi

ble

Impossible

【Explanation】

When there is data in Data Queues specified by dtqid, the beginning data will be taken out

and returned to data. In case there is Task waiting for sending by Data Queues, then put data of

Task in the beginning of transmission waiting queue for sending to the end of Data Queues, and

release that Task from waiting status. Also, return E_OK as a return value of System Call in

waiting status to Task which had been release from waiting.

When there is Task waiting for transmission by Data Queues but in a status which there is no

data, receive data of Task for sending from Task in the beginning of transmission waiting queue,

and release that Task from waiting status. Also, return E_OK to the Task which has been

CHAPTER 5 Explanation of System Call

123
Copyright © eForce Co.,Ltd. All Rights Reserved

release from waiting as a return value of System Call in waiting status. Return the received data

to data.

In case there is no either data or Task waiting for transmission, local Task will be connected to

receiving-waiting queue, and it is changed to receiving-waiting status from Data Queues.

prcv_dtq is System Call running process of rcv_dtq by polling, and trcv_dtq is System Call

which added time-out function to rcv_dtq. Also, it is possible to specify TMO_POL(＝0)or

TMO_FEVR(＝－1)to tmout. In µC3/Compact, trcv_dtq specifying TMO_FEVR to tmout is

used as rcv_dtq, and trcv_dtq specifying TMO_POL to tmout is used as prcv_dtq.

In dtqid, definition name of Data Queues ID which is created by configurator is used and

specified.

ref_dtq Refer to Data Queues status

μC3/Compact Users Guide

124
Copyright © eForce Co.,Ltd. All Rights Reserved

【Format】

 ER ercd = ref_dtq(ID dtqid, T_RDTQ *pk_rdtq) ;

【Parameter】

 ID dtqid ID number of Data Queues for status reference

 T_RDTQ* pk_rdtq Pointer to packet which returns Data Queues status

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 Content of pk_rdtq(T_RDTQ type)

 ID stskid ID number of Task in the beginning of transmission

waiting queue of Data Queues

 ID rtskid ID number of Task in the beginning of receiving- waiting

queue of Data Queues

 UINT sdtqcnt Number of data in Data Queues

【Error Code】

 E_ID Incorrect ID number(dtqidis incorrect or cannot be used)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

Refer status of Data Queues specified by dtqid, and return to packet specified by pk_rdtq.

Return ID number of Task in the beginning of transmission waiting queue of Data Queues to

stskid. In case there is no Task waiting for transmission, then return TSK_NONE(＝0).

Return ID number of Task in the beginning of receiving-waiting queue of Data Queues to

rtskid. In case there is no Task waiting for receiving, then return TSK_NONE(＝0).

Return number of data existing currently in Data Queues to sdqcnt.

In dtqid, definition name of Data Queues ID which is created by configurator is used and

specified.

μC3/Compact Users Guide

125
Copyright © eForce Co.,Ltd. All Rights Reserved

5．3．4 Mailboxes

snd_mbx Send to Mailbox

【Format】

 ER ercd = snd_mbx(ID mbxid, T_MSG *pk_msg) ;

【Parameter】

 ID mbxid ID number of Mailbox for transmission

 T_MSG* pk_msg The beginning number of message packet sent to

Mailbox

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(mbxidis incorrect or cannot be used)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

When there is Task waiting for receiving by Mailbox specified by mbxid, pass the beginning

number of message packet specified by pk_msg to Task in the beginning of waiting queue, and

release that Task from waiting status. Also, return E_OK to the Task which has been released

from waiting as a return value of System Call in waiting status, and return value of pk_msg as

the beginning number of message packet received from Mailbox.

In case there is no Task in waiting for receiving, then put message packet, in which pk_msg is

made as the beginning number, to the end of Message cue. At this time, sending message

packet must be already flowing in Message cue of Mailbox.

In mbxid, definition name of Mailbox ID which is created by configurator is used and specified.

μC3/Compact Users Guide

126
Copyright © eForce Co.,Ltd. All Rights Reserved

【Usage】

T_MSGPKT* pk_msgpkt; /* Secure area storing the beginning number of message packet */

ER ercd;

ercd = get_mpf(ID_Mpf1, &pk_msgpkt);

if (ercd == E_OK) {

 /* Edit message packet */

 /* Make pointer to storing area to become Parameter and call it */

ercd = snd_mbx(ID_Mbx1, (T_MSG*)pk_msgpkt);

}

CHAPTER 5 Explanation of System Call

127
Copyright © eForce Co.,Ltd. All Rights Reserved

rcv_mbx Receive from Mailbox

prcv_mbx Receive from Mailbox(Polling)

trcv_mbx Receive from Mailbox(with time-out)

【Format】

 ER ercd = rcv_mbx(ID mbxid, T_MSG **ppk_msg) ;

 ER ercd = prcv_mbx(ID mbxid, T_MSG **ppk_msg) ;

 ER ercd = trcv_mbx(ID mbxid, T_MSG **ppk_msg, TMO tmout) ;

【Parameter】

 ID mbxid ID number of receiving Mailbox

 TMO tmout Specify time-out(only trcv_mbx)

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 T_MSG* pk_msg The beginning number of message packet received

from Mailbox

【Error Code】

 E_ID Incorrect ID number(mbxidis incorrect or cannot be used)

 E_RLWAI Compulsive release of waiting status(Receive rel_wai in waiting status；

other than prcv_mbx)

 E_TMOUT Polling failure or time-out(other than rcv_mbx)

【Call Context】 rcv_mbx prcv_mbx trcv_mbx

 Task Possible Possible Possible

 Time Event Handler Impossible Possible Impossible

 Interrupt Service Routine Impossible Impossible Impossible

【Explanation】

If there is message in Message cue of Mailbox specified by mbxid, that message packet in

the beginning will be taken out, and that beginning number is returned to pk_msg. When there

is no message, local Task will be connected to waiting queue, and it is changed to receiving

status from Mailbox.

prcv_mbx is System Call running process of rcv_mbx by Polling, and trcv_mbx is System Call

which added time-out function to rcv_mbx. Also, it is possible to specify TMO_POL(＝0) or

TMO_FEVR(＝－1)to tmout. In µC3/Compact, trcv_mbx specifying TMO_FEVR to tmout is

used as rcv_mbx, and trcv_mbx specifying TMO_POL to tmout is used as prcv_mbx.

In mbxid, definition name of Mailbox ID which is created by configurator is used and specified.

μC3/Compact Users Guide

128
Copyright © eForce Co.,Ltd. All Rights Reserved

【Usage】

T_MSGPKT* pk_msgpkt; /* Secure area storing the beginning number of message packet*/

ER ercd;

ercd = rcv_mbx(ID_Mbx1, (T_MSG **)&pk_msgpkt);

if (ercd == E_OK) {

 /* Confirm message packet */

/* Make number of memory block as Parameter and call it */

ercd = rel_mpf(ID_mpf1, pk_msgpkt);

}

ref_mbx Reference Mailbox State

CHAPTER 5 Explanation of System Call

129
Copyright © eForce Co.,Ltd. All Rights Reserved

【Format】

 ER ercd = ref_mbx(ID mbxid, T_RMBX *pk_rmbx) ;

【Parameter】

 ID mbxid ID number of Mailbox for status reference

 T_RMBX* pk_rmbx Pointer to packet which returns Mailbox status

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 Content of pk_rmbx(T_RMBX type)

 ID wtskid ID number of Task in the beginning of waiting queue of

Mailbox

 T_MSG* pk_msg The beginning number of message packet of

Message cue

【Error Code】

 E_ID Incorrect ID number(mbxidis incorrect or cannot be used)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

Refer to status of Mailbox specified by mbxid, and return to packet specified by pk_rmbx.

Return ID number of Task in the beginning of Mailbox waiting queue to wtskid. In case there is

no Task waiting for receiving, then return TSK_NONE(＝0).

Return the beginning number of message packet in the beginning of Message cue of Mailbox

to pk_msg. If there is no message in Message cue, return NULL(＝0).

In mbxid, definition name of Mailbox ID which is created by configurator is used and specified.

5．4 Memory Pool Management Functions

5．4．1 Fixed-Sized Memory Pools

get_mpf Acquire Fixed-Sized Memory Block

μC3/Compact Users Guide

130
Copyright © eForce Co.,Ltd. All Rights Reserved

pget_mpf Acquire Fixed-Sized Memory Block(Polling)

tget_mpf Acquire Fixed-Sized Memory Block(with time-out)

【Format】

 ER ercd = get_mpf(ID mpfid, VP *p_blk) ;

 ER ercd = pget_mpf(ID mpfid, VP *p_blk) ;

 ER ercd = tget_mpf(ID mpfid, VP *p_blk, TMO tmout) ;

【Parameter】

 ID mpfid ID number of Fixed-Sized memory pool of memory block

acquisition

 TMO tmout Specify time-out(only tget_mpf)

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 VP blk The beginning number of the acquired memory block

【Error Code】

 E_ID Incorrect ID number(mpfidis incorrect or cannot be used)

 E_RLWAI Compulsive release of waiting status(Receive rel_wai in waiting status；

other than pget_mpf)

 E_TMOUT Polling failure or time-out(other than get_mpf)

【Call Context】 get_mpf pget_mpf tget_pmf

 Task Possible Possible Possible

 Time Event Handler Impossible Possible Impossible

 Interrupt Service Routine Impossible Impossible Impossible

【Explanation】

In case there is empty memory block in memory area of Fixed-Sized memory pool specified

by mpfid, select some in them and return that beginning number to blk.

If there is no empty memory block, then connect local Task to waiting queue, and changed it to

waiting status of Fixed-Sized memory pool acquisition. pget_mpf is System Call running

process of get_mpf by Polling, and tget_mpf is System Call which added time-out function to

get_mpf. Also, it is possible to specify TMO_POL(＝0) or TMO_FEVR(＝－1)to tmout. In

µC3/Compact, tget_mpf specifying TMO_FEVR to tmout is used as get_mpf, and tget_mpf

specifying TMO_POL to tmout is used as pget_mpf. In mpfid, definition name of Fixed-Sized

memory pool ID which is created by configurator is used and specified.

μC3/Compact Users Guide

131
Copyright © eForce Co.,Ltd. All Rights Reserved

rel_mpf Release Fixed-Sized Memory Block

【Format】

 ER ercd = rel_mpf(ID mpfid, VP blk) ;

【Parameter】

 ID mpfid ID number of Fixed-Sized memory pool for returning

memory block

 VP blk The beginning number of memory block for returning

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(mpfidis incorrect or cannot be used)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

In case there is no Task waiting for acquiring memory block by Fixed-Sized memory pool

which is specified by mpfid, then memory block in which blk is made as the beginning number

will be returned to memory area of that Fixed-Sized memory pool.

If there is Task waiting for acquisition, then acquire the returned mamory block in Task in the

beginning of waiting queue, and release that Task from waiting. Also, return E_OK to Task

which was released from waiting as a return value of System Call in waiting status, and return

value of blk as the beginning number of memory block acquired from Fixed-Sized memory

block.

The beginning number of the returned memory block, which is retuned, is the one of acquired

memory block from Fixed-Sized memory pool specified by mpfid, so it must be the one which

has not been returned.

In mpfid, definition name of Fixed-Sized memory pool ID which is created by configurator is

used and specified.

μC3/Compact Users Guide

132
Copyright © eForce Co.,Ltd. All Rights Reserved

ref_mpf Reference Fixed-Sized Memory Pool State

【Format】

 ER ercd = ref_mpf(ID mpfid, T_RMPF *pk_rmpf) ;

【Parameter】

 ID mpfid ID number of Fixed-Sized memory pool for status

reference

 T_RMPF* pk_rmpf Pointer to oacket which returns status of Fixed-Sized

memory pool

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 Content of pk_rmpf(T_RMPF type)

 ID wtskid ID number of Task in the beginning of waiting queue of

Fixed-Sized memory pool

 UINT fblkcnt Empty memory block number of Fixed-Sized memory

pool(Number)

【Error Code】

 E_ID Incorrect ID number(mpfidis incorrect or cannot be used)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

Refer to status of Fixed-Sized memory pool specified by mpfid, and return to packet specified

by pk_rmpf.

Return ID number of Task in the beginning of waiting queue of Fixed-Sized memory pool to

wtskid. If there is no Task waiting for acquiring memory block, TSK_NONE(＝0) will be returned.

Return number of empty memory block in area of Fixed-Sized memory pool to fblkcnt.

In mpfid, definition name of Fixed-Sized memory pool ID which is created by configurator is

used and specified.

CHAPTER 5 Explanation of System Call

133
Copyright © eForce Co.,Ltd. All Rights Reserved

5．5 Time Management Functions

5．5．1 System Time Management

set_tim Set System Time

【Format】

 ER ercd = set_tim(SYSTIM *p_systim) ;

【Parameter】

 SYSTIM systim Set up time to System time

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 There is no Error that should be mentioned specially.

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

Set up the present System time so that it will display time in system. Also, Time-out time of

System which already has been called will not be changed by the change of System time.

μC3/Compact Users Guide

134
Copyright © eForce Co.,Ltd. All Rights Reserved

get_tim Reference System Time

【Format】

 ER ercd = get_tim(SYSTIM *p_systim) ;

【Parameter】

 No

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 SYSTIM systim System time at the present

【Error Code】

 There is no Error that should be mentioned specially.

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

Call out the present System time and return to system.

CHAPTER 5 Explanation of System Call

135
Copyright © eForce Co.,Ltd. All Rights Reserved

isig_tim Supply Time Tick

【Format】

 ER ercd = isig_tim() ;

【Parameter】

 No

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 There is no Error that should be mentioned specially.

【Call Context】

 Task Impossible

 Time Event Handler Impossible

 Interrupt Service Routine Possible

【Explanation】

Tick time is added to System Time.

μC3/Compact Users Guide

136
Copyright © eForce Co.,Ltd. All Rights Reserved

5．5．2 Cyclic Handlers

sta_cyc Start Cyclic Handler Operation

【Format】

 ER ercd = sta_cyc(ID cycid) ;

【Parameter】

 ID cycid ID number of operation starting Cycle Handler

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(cycidis incorrect or cannot be used)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

When there is no TA_PHS attribute specified in Cycle handler which is specified by cycid, it

will be changed to operating status. Also, when System Call is called, Time adding starting-up

cycle of Cycle Handler is made as time which should start the next Cycle Handler. At this time, if

it has already been in operation, then change only time which should nextly start-up. In case

TA_PHS attribute is specified, change status which has not been in operation to operating

status, and do nothing if it’s in operating status.

In cycid, definition name of Cycle Handler ID which is created by configurator is used and

specified.

μC3/Compact Users Guide

137
Copyright © eForce Co.,Ltd. All Rights Reserved

stp_cyc Stop Cyclic Handler Operation

【Format】

 ER ercd = stp_cyc(ID cycid) ;

【Parameter】

 ID cycid ID number of Cycle handler for stopping operation

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(cycidis incorrect or cannot be used)

 E_NOEXS Object which has not been created(The target Cycle Handler has not

been registered yet)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

In case Cycle Handler specified by cycid is in operation status, change it to non-operation

status. And do nothing if it is in non-operation status.

In cycid, definition name of Cycle Handler ID which is created by configurator is used and

specified.

μC3/Compact Users Guide

138
Copyright © eForce Co.,Ltd. All Rights Reserved

ref_cyc Reference Cyclic Handler State

【Format】

 ER ercd = ref_cyc(ID cycid, T_RCYC *pk_rcyc) ;

【Parameter】

 ID cycid ID number of Cycle Handler for status reference

 T_RCYC* pk_rcyc Pointer to packet which returns status of Cycle

Handler

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 Content of pk_rcyc(T_RCYC type)

 STAT cycstat Operation status of Cycle Handler

 RELTIM lefttim Time till next starting-up of Cycle Handler

【Error Code】

 E_ID Incorrect ID number(cycidis incorrect or cannot be used)

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

Refer to status of Cycle Handler specified by cycid, and return to packet which is specified by

pk_rcyc.

In cycstat, it will return to either in the following value depending on operation status or

non-operation status of Cycle Handler.

TCYC_STP 0x00 Cycle Handler is not in operation

TCYC_STA 0x01 Cycle Handler is in operation

In lefttim, if the target Cycle Handler is in operation status, time that is till next starting-up of

the target Cycle Handler will be returned. However, the return value of lefttim is the time which

secures till next starting-up of Cycle Handler. Therefore, if Cycle Handler is started up in the

next Time Tick, 0 will be returned to lefttim. When the target Cycle Handler is in non-operation

status, an irregular value will be returned to lefttim.

In cycid, definition name of Cycle Handler ID which is created by configurator is used and

specified.

CHAPTER 5 Explanation of System Call

139
Copyright © eForce Co.,Ltd. All Rights Reserved

μC3/Compact Users Guide

140
Copyright © eForce Co.,Ltd. All Rights Reserved

5．6 System State Management Functions

rot_rdq Rotate Task Precedence

irot_rdq

【Format】

 ER ercd = rot_rdq(PRI tskpri) ;

 ER ercd = irot_rdq(PRI tskpri) ;

【Parameter】

 PRI tskpri Priority Level of object that rotates Priority Level

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_NOSPT The Task in the beginning of Priority Order of the target Priority Level is

Restriction Task Attribute

【Call Context】 rot_rdq irot_rdq

 Task Possible Possible

 Time Event Handler Possible Possible

 Interrupt Service Routine Possible Possible

【Explanation】

Rotate Priority Order of Task of Priority Level specified by tskpri. In other words, make Task,

which is in Tasks having Priority Level and in runnable state, become the one of highest Priority

Order; and make Task which has the same Priority Level become the one of lowest Priority

Order. If specifying TPRI_SELF(＝0)to tskpri, base Priority Level of local Task will become the

target Priority Level.

【Recommendation 】

Because rot_rdq and irot_rdq of µC3/Compact are mounted as the same System Call, so it

can be the same Usage, regardless Call Context. However, in case of calling from Task Context,

it is recommended to use rot_rdq, or use irot_rdq in other cases.

get_tid Reference Task ID in the RUNNING State

iget_tid

CHAPTER 5 Explanation of System Call

141
Copyright © eForce Co.,Ltd. All Rights Reserved

【Format】

 ER ercd = get_tid(ID *p_tskid) ;

 ER ercd = iget_tid(ID *p_tskid) ;

【Parameter】

 No

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 ID tskid ID number of Task in execution status

【Error Code】

 E_PAR ParameterError(p_tskid is incorrect)

【Call Context】 get_tid iget_tid

 Task Possible Possible

 Time Event Handler Possible Possible

 Interrupt Service Routine Possible Possible

【Explanation】

Refer to ID number of Task in execution status, and return it to tskid. When there is no Task in

execution status if it is called from Non-Task Context, return TSK_NONE(＝0)to tskid.

【Recommendation 】

 Because get_tid and iget_tid of µC3/Compact are mounted as the same System Call, so it

can be the same Usage, regardless Call Context. However, in case of calling from Task Context,

it is recommended to use get_tid, or use iget_tid in other cases.

μC3/Compact Users Guide

142
Copyright © eForce Co.,Ltd. All Rights Reserved

loc_cpu Lock the CPU

iloc_cpu

【Format】

 ER ercd = loc_cpu() ;

 ER ercd = iloc_cpu() ;

【Parameter】

 No

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 There is no Error that should be mentioned specially.

【Call Context】 loc_cpu iloc_cpu

 Task Possible Possible

 Time Event Handler Possible Possible

 Interrupt Service Routine Possible Possible

【Explanation】

Change to CPU Lock status. And do nothing if it is called by CPU Lock status.

CPU Lock status is depending on processor, so please refer to “processor dependence part

Manual” for more explanation.

【Recommendation 】

Because loc_cpu and iloc_cpu of µC3/Compact are mounted as the same System Call, so it

can be the same Usage, regardless Call Context. However, in case of calling from Task Context,

it is recommended to use loc_cpu, or use iloc_cpu in other cases.

unl_cpu Unlock the CPU

CHAPTER 5 Explanation of System Call

143
Copyright © eForce Co.,Ltd. All Rights Reserved

iunl_cpu

【Format】

 ER ercd = unl_cpu() ;

 ER ercd = iunl_cpu() ;

【Parameter】

 No

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 There is no Error that should be mentioned specially

【Call Context】 unl_cpu iunl_cpu

 Task Possible Possible

 Time Event Handler Possible Possible

 Interrupt Service Routine Possible Possible

【Explanation】

Change to release CPU Lock status. And do nothing if it is called by release CPU Lock status.

CPU Lock status release is depending on processor, so please refer to “processor

dependence part Manual” for more explanation.

【Recommendation 】

Because unl_cpu and iunl_cpu of µC3/Compact are mounted as the same System Call, so it

can be the same Usage, regardless Call Context. However, in case of calling from Task Context,

it is recommended to use unl_cpu , or use iunl_cpu in other cases.

.

μC3/Compact Users Guide

144
Copyright © eForce Co.,Ltd. All Rights Reserved

dis_dsp Disable Dispatching

【Format】

 ER ercd = dis_dsp() ;

【Parameter】

 No

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 There is no Error that should be mentioned specially.

【Call Context】

 Task Possible

 Time Event Handler Impossible

 Interrupt Service Routine Impossible

【Explanation】

Change to Dispatch pendig status. And do nothing if it is called from Dispatch pending status.

CHAPTER 5 Explanation of System Call

145
Copyright © eForce Co.,Ltd. All Rights Reserved

ena_dsp Enable Dispatching

【Format】

 ER ercd = ena_dsp() ;

【Parameter】

 No

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 There is no Error that should be mentioned specially.

【Call Context】

 Task Possible

 Time Event Handler Impossible

 Interrupt Service Routine Impossible

【Explanation】

Change to Dispatch permission status. And do nothing if it is called from Dispatch permission

status.

μC3/Compact Users Guide

146
Copyright © eForce Co.,Ltd. All Rights Reserved

sns_ctx Reference Contexts

【Format】

 BOOL state = sns_ctx() ;

【Parameter】

 No

【Return value】

 BOOL state Context

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Possible

【Explanation】

Return to TRUE if it is called from Non-Task Context, and return to FALSE if it is called from

Task Context.

sns_loc Reference CPU State

CHAPTER 5 Explanation of System Call

147
Copyright © eForce Co.,Ltd. All Rights Reserved

【Format】

 BOOL state = sns_loc() ;

【Parameter】

 No

【Return value】

 BOOL state CPU Lock status

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Possible

【Explanation】

Return to TRUE if System is in CPU Lock status, and return to FALSE if it is in CPU release

status.

μC3/Compact Users Guide

148
Copyright © eForce Co.,Ltd. All Rights Reserved

sns_dsp Reference Dispatching Disabled State

【Format】

 BOOL state = sns_dsp() ;

【Parameter】

 No

【Return value】

 BOOL state Dispatch Pending status

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Possible

【Explanation】

Return to TRUE if System is in Dispatch Pending status, and return to FALSE if it is in

Dispatch permission status.

sns_dpn Reference Dispatch Pending State

CHAPTER 5 Explanation of System Call

149
Copyright © eForce Co.,Ltd. All Rights Reserved

【Format】

 BOOL state = sns_dpn() ;

【Parameter】

 No

【Return value】

 BOOL state Dispatch reservation status

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Possible

【Explanation】

Return to TRUE if System is in Dispatch reservation status, and return to FALSE for other

caes. In other words, return to TRUE if it is either in CPU Lock status, or Dispatch Pending

status, or when Interrupt level is higher than Task level.

μC3/Compact Users Guide

150
Copyright © eForce Co.,Ltd. All Rights Reserved

ref_sys Reference System State

【Format】

 ER ercd = ref_sys(T_RSYS *pk_rsys) ;

【Parameter】

 T_RSYS* pk_rsys Pointer to packet which returns System status

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 Content of pk_rsys(T_RSYS type)

 There is no field that should be mentioned specially.

【Error Code】

 There is no Error that should be mentioned specially.

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Impossible

【Explanation】

Refer to System status, and return to packet specified by pk_rsys.

【Complement】

At the time of creating this Manual, there is still no information for referring to System status.

CHAPTER 5 Explanation of System Call

151
Copyright © eForce Co.,Ltd. All Rights Reserved

5．7 Interrupt Management Functions

chg_ims Change Interrupt Mask

【Format】

 ER ercd = chg_ims(IMASK imask) ;

【Parameter】

 IMASK imask Interrupt mask after change

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 There is no Error that should be mentioned specially.

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Possible

【Explanation】

Change Interrupt level of processor to value specified by imask. This System Call is

depending on processor, so please refer to “Processor dependence part Manual” for more

explanation.

μC3/Compact Users Guide

152
Copyright © eForce Co.,Ltd. All Rights Reserved

get_ims Reference Interrupt Mask

【Format】

 ER ercd = get_ims(IMASK *p_imask) ;

【Parameter】

 No

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 IMASK imask The present Interrupt mask

【Error Code】

 There is no Error that should be mentioned specially.

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Possible

【Explanation】

Refer to Interrupt mask of processor and return to imask.

CHAPTER 5 Explanation of System Call

153
Copyright © eForce Co.,Ltd. All Rights Reserved

5．8 System Configuration Management Functions

ref_cfg Reference Configuration Information

【Format】

 ER ercd = ref_cfg(T_RCFG *pk_rcfg) ;

【Parameter】

 T_RCFG* pk_rcfg Pointer to packet which returns configuration

information

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 Content of pk_rcfg(T_RCFG type)

 UH tick Cycle time of Time Tick

 UH tskpri_max Upper TaskPriority Level

 UH id_max Maximum ID number

【Error Code】

 There is no Error that should be mentioned specially.

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Possible

【Explanation】

Refer to information specified by configuration of System and return to packet specified by

pk_rcfg.

In Tick, Cycle time of Time Tick specified as Tick time is returned.

In tskpri_max, upper TaskPriority Level specified as Task Priority Level number is returned.

In id_max, return maximum ID number in ID number used in System.

μC3/Compact Users Guide

154
Copyright © eForce Co.,Ltd. All Rights Reserved

ref_ver Reference Version Information

【Format】

 ER ercd = ref_ver(T_RVER *pk_rver) ;

【Parameter】

 T_RVER* pk_rver Pointer to packet which returns Version information

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 Content of pk_rver(T_RVER type)

 UH maker Maker code of kernel

 UH prid Identified number of kernel

 UH spver Version number of ITRON specification

 UH prver Version number of kernel

 UH prno[4] Information management of kernel product

【Error Code】

 There is no Error that should be mentioned specially.

【Call Context】

 Task Possible

 Time Event Handler Possible

 Interrupt Service Routine Possible

【Explanation】

Refer to Version information of kernel in use and return to packet specified by pk_rver.

【Complement】

At the time of creating this Manual, maker code has not been acquired yet. Therefore, 0x000

will be returned.

Chapter 6 Explanation of standard COM port driver

155
Copyright © eForce Co.,Ltd. All Rights Reserved

CHAPTER 6 Explanation of standard COM port driver

6．1 Outline of standard COM port driver

Using method of using COM port in µC3/Compact is regulated, and that driver is called

standard COM port driver. Here is an explanation of service call of standard COM port driver.

Service call is only corresponding from Task Context, and it is impossible to use by Dispatch

reservation status.

μC3/Compact Users Guide

156
Copyright © eForce Co.,Ltd. All Rights Reserved

6．2 Service call of standard COM port driver

ini_com Initialization of COM port

【Format】

 ER ercd = ini_com(ID DevID, T_COM_SMOD const *pk_SerialMode) ;

【Parameter】

 ID DevID ID number of device

 T_COM_SMOD const * pk_SerialMode Pointer to packet of initial information

 Content of pk_SerialMode(T_COM_SMOD type)

 UW baud Baud rate

 UB blen Data bit

 UB par Parity

 UB sbit Stop bit

 UB flow Flow control

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(DevIDis incorrect or cannot be used)

 E_PAR ParameterError

【Explanation】

Initialize device specified in DecID by the content of packet of initial information. Definition

name of deviceID created by configurator in DevID is used and specified.

In baud, specify Baud rate of serial device.

In blen, specify either of these data bit:

BLEN8 ８-bit data length

BLEN7 ７-bit data length

BLEN6 ６-bit data length

BLEN5 ５-bit data length

In par, specify either of these parities:

PAR_NONE Parity bit invalidity

PAR_EVEN Even number parity bit validity

PAR_ODD Odd number parity bit validity

Chapter 6 Explanation of standard COM port driver

157
Copyright © eForce Co.,Ltd. All Rights Reserved

In sbit, specify either of these Stop bit:

SBIT1 １bit stop

SBIT15 １．５-bit data length

SBIT2 ２-bit data length

In flow, specify either of these flow controls:

FLW_NONE Flow control invalidity

FLW_XON Software flow control validity

FLW_HARD Hardware flow control validity

μC3/Compact Users Guide

158
Copyright © eForce Co.,Ltd. All Rights Reserved

ctr_com Control COM port

【Format】

 ER ercd = ctr_com (ID DevID, UH command, TMO tmout) ;

【Parameter】

 ID DevID ID number of device

 UH command Control command

 TMO tmout Specify time-out

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(DevIDis incorrect or cannot be used)

 E_TMOUT Polling failure or time-out

 E_PAR ParameterError

【Explanation】

Control device specified in DecID by the content specified by command. Definition name of

device ID created by configurator in DevID is used and specified.

There are following types in Command, and it is possible to specify various command by

logical disjunction(OR). In this case, the order will be from the upper command.

RST_COM 0xF800 Reset COM port

CLN_TXBUF 0x8000 Waiting for sending of transmission buffer

RST_BUF 0x6000 Clear sending-receiving buffer

RST_TXBUF 0x4000 Clear sending buffer

RST_RXBUF 0x2000 Clear receiving buffer

STP_COM 0x1800 Prohibit sending, receiving

STP_TX 0x1000 Prohibit sending

STP_RX 0x0800 Prohibit receiving

SND_BRK 0x0400 Sending of break character

STA_COM 0x0300 Permit sending, receiving

STA_TX 0x0200 Permit sending

STA_RX 0x0100 Permit receiving

LOC_TX 0x0080 Transmission lock

LOC_RX 0x0040 Receiving lock

Chapter 6 Explanation of standard COM port driver

159
Copyright © eForce Co.,Ltd. All Rights Reserved

UNL_TX 0x0020 Release transmission lock

UNL_RX 0x0010 Release receiving lock

tmout will specify Time-out time in case of CLN_TXBUF, and sending time in case of

SND_BRK. In that case, it will be ignored.

μC3/Compact Users Guide

160
Copyright © eForce Co.,Ltd. All Rights Reserved

putc_com Sending character to COM port

【Format】

 ER ercd = putc_com (ID DevID, VB chr, TMO tmout) ;

【Parameter】

 ID DevID ID number of device

 VB chr Character transmission

 TMO tmout Specify time-out

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(DevIDis incorrect or cannot be used)

 E_TMOUT Polling failure or time-out

【Explanation】

Send the character transmission chr from device which is specified by DecID. Definition name

of deviceID created by configurator in DevID is used and specified.

tmout will specify Time-out time till sending.

Chapter 6 Explanation of standard COM port driver

161
Copyright © eForce Co.,Ltd. All Rights Reserved

puts_com Character string transmission of COM port

【Format】

 ER ercd = puts_com (ID DevID, VB const *p_schr, UINT *p_scnt, TMO tmout) ;

【Parameter】

 ID DevID ID number of device

 VB const * schr Character string transmission

 UINT * scnt Character number transmission

 TMO tmout Specify time-out

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(DevIDis incorrect or cannot be used)

 E_TMOUT Polling failure or time-out

【Explanation】

Send the character string transmission schr from device which is specified by DecID and only

the character number transmission scnt. Definition name of deviceID created by configurator in

DevID is used and specified.

tmout will specify Time-out time till sending.

μC3/Compact Users Guide

162
Copyright © eForce Co.,Ltd. All Rights Reserved

getc_com Receive 1 character from COM port

【Format】

 ER ercd = getc_com(ID DevID, VB *p_rbuf, UB *p_sbuf, TMO tmout) ;

【Parameter】

 ID DevID ID number of device

 VB * rbuf Receive character

 UB * sbuf Sending status

 TMO tmout Specify time-out

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(DevIDis incorrect or cannot be used)

 E_TMOUT Polling failure or time-out

【Explanation】

Return the received character to rbuf, and return receiving status to sbuf from device

specified by DecID. At this time, if receiving status is unnecessary, then specify 0 to p_sbuf.

Definition name of deviceID created by configurator in DevID is used and specified.

tmout will specify Time-out time till sending.

Chapter 7 Appendix

163
Copyright © eForce Co.,Ltd. All Rights Reserved

gets_com Receive character string from COM port

【Format】

ER ercd = gets_com(ID DevID, VB *p_rbuf, UB *p_sbuf, INT eos, UINT *p_rcnt, TMO

tmout) ;

【Parameter】

 ID DevID ID number of device

 VB * rbuf Array row of receiving character

 UB * sbuf Array of receiving status

 INT eos Ending character

 UINT rcnt Receiving character number

 TMO tmout Specify time-out

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

【Error Code】

 E_ID Incorrect ID number(DevIDis incorrect or cannot be used)

 E_TMOUT Polling failure or time-out

【Explanation】

From device specified by DecID, return the character which has been received to rbuf, and

return receiving status to sbuf. Specify size of storing area of receiving data to rcnt, and return

the received character to rcnt. At this time, if receiving status is unnecessary, then specify 0 to

p_sbuf. In DevID, definition name of deviceID which is created by configurator is used and

specified.

Make the receiving to Successful completion when storing area is filled, or ending character is

received, or there is Error in case receiving status is valid.

tmout will specify Time-out time till sending.

μC3/Compact Users Guide

164
Copyright © eForce Co.,Ltd. All Rights Reserved

ref_com Refer to COM port status

【Format】

 ER ercd = ref_com(ID tskid, T_COM_REF *pk_SerialRef) ;

【Parameter】

 ID DevID ID number of device

 T_COM_REF * pk_SerialRef COM port status

【Return value】

 ER ercd Successful completion(E_OK)or Error Code

 Content of pk_SerialRef(T_COM_REF type)

 UH rxcnt Character number which has been received

 UH txcnti Character number which has not been sent

 UH status Status

【Error Code】

 E_ID Incorrect ID number(tskidis incorrect or cannot be used)

【Explanation】

Refer to status of device which is specified by DecID, and return to packet specified by

pk_SerialRef. Return Character number which has been received in driver to rxcnt, and return

Character number which has not been sent to txcnt.

Depending on status, return the following status by value of logical disjunction (OR):

T_COM_EROVB 0x0001 FIFO Overrunning

T_COM_EROR 0x0002 Overrunning Error

T_COM_ERP 0x0004 ParityError

T_COM_ERF 0x0008 Flaming Error

T_COM_BRK 0x0010 Receving Break character

T_COM_TXOFF 0x0020 Transmission XOFF reception

T_COM_RXOFF 0x0040 Receiving XOFF transmission

T_COM_RTS 0x0080 RTS Signal active

T_COM_CTS 0x0100 CTS Signal active

T_COM_DTR 0x0200 DTR Signal active

T_COM_DSR 0x0400 DSR Signal active

T_COM_CD 0x0800 CD Signal active

T_COM_RI 0x1000 RI Signal active

T_COM_ENARX 0x2000 Permitted receiving status

T_COM_ENATX 0x4000 Permitted sending status

Chapter 7 Appendix

165
Copyright © eForce Co.,Ltd. All Rights Reserved

CHAPTER 7 Appendix

7．1 Data type

Data types which have been regulated in µITRON4.0 specification are as following:(excluding

data type of packet)

B 8-bit integer with sign

H 16- bit integer with sign

W 32- bit integer with sign

UB 8-bit integer without sign

UH 16-bit integer without sign

UW 32--bit integer without sign

VB 8-bit value of which data type is not decided

VH 16-bit value of which data type is not decided

VW 32-bit value of which data type is not decided

VP Pointer to the one that data type is not decided

FP Starting-up number of program(pointer)

INT Integer in processor with natural size sign

UINT Integer in processor without natural size sign

BOOL True/false value(TRUE or FALSE)

FN Function code(Integer with sign)

ER Error Code(Integer with sign)

ID ID number of object(Integer with sign)

ATR Attribute of object(Integer without sign)

STAT Status of object(Integer without sign)

MODE Operation mode of Service call(Integer without sign)

PRI Priority Level(Integer with sign)

SIZE Size of memory area(Integer without sign)

TMO Specify time-out(Integer with sign, time unit is 1 mili-second)

RELTIM Corresponding time(Integer without sign, time unit is 1 mili-second)

μC3/Compact Users Guide

166
Copyright © eForce Co.,Ltd. All Rights Reserved

SYSTEM System time(Integer without sign, time unit is 1 mili-second)

VP_INT
Pointer to the one that data type is not decided or an integer in the

processor with the natural size sign

ER_BOOL Error Code or True/false value

ER_ID Error Code or ID number(Negative ID number is not expressible)

ER_UINT
Error Code or Integer without sign(Valid bit number of Integer without sign is

1 bit shorter than UINT)

FLGPTN Bit pattern of Eventflag(Integer without sign)

T_MSG Message header to Mailbox

INTNO Interrupt number

IMASK Interrupt mask

【Complement】

INT,UINT,VP_INT,FLGPTN are depending on processor, so please refer to “Processor

dependence part mounting Manual” for more detail.

Chapter 7 Appendix

167
Copyright © eForce Co.,Ltd. All Rights Reserved

7．2 Form of packet

(1)Task management functions

Packet form of Task status

 typedef struct t_rtsk {

 STAT tskstat ; /* Taskstatus */

 PRI tskpri ; /* The Current Priority Level of Task */

 PRI tskbpri ; /* Base Priority Level of Task */

 STAT tskwait ; /* Waiting factor */

 ID wobjid ; /* ID number of Object for waiting*/

 TMO lefttmo /* Time till time-out */

 UINT actcnt /* Start-up request queuing number */

 UINT wupcnt /* Get-up request queuing number */

 UINT suscnt /* Waiting control request nest number */

 } T_RTSK ;

Packet form of Task status(simple edition)

 typedef struct t_rtst {

 STAT tskstat ; /* Task status */

 STAT tskwait ; /* Waiting factor */

 } T_RTST ;

(2)Synchronization and Communication Functions

Packet form of Semaphore status

 typedef struct t_rsem {

 ID wtskid ;
/* ID number of Task in the beginning of waiting

queue of Semaphore*/

 UINT semcnt ;
/* The present resource number of Semaphore

*/

 } T_RSEM ;

Packet form of Eventflag status

 typedef struct t_rflg {

 ID wtskid ;
/* ID number of Task in the beginning of waiting

queue of Eventflag*/

 FLGPTN flgptn ; /* The present bit pattern of Eventflag */

 } T_RFLG ;

μC3/Compact Users Guide

168
Copyright © eForce Co.,Ltd. All Rights Reserved

Packet form of Data Queues status

 typedef struct t_rdtq {

 ID stskid
/* ID number of Task in the beginning of

transmission waiting queue of Data Queues*/

 ID rtskid
/* ID number of Task in the beginning of

receiving-waiting queue of Data Queues*/

 UINT sdtqcnt /* Number of data in Data Queues */

 } T_RDTQ ;

Packet form of Mailbox status

 typedef struct t_rmbx {

 ID wtskid ;
/* ID number of Task in the beginning of waiting

queue */

 T_MSG* pk_msg ;
/* The beginning number of message packet in

the beginning of Message cue*/

 } T_RMBX ;

(3)Memory Pool Management Functions

Packet form of status of Fixed-Sized memory pool

 typedef struct t_rmpf {

 ID wtskid ;
/* ID number of Task in the beginning of waiting

queue of Fixed-Sized memory pool*/

 UINT fblkcnt ;
/* Empty memory block number (number) of

Fixed-Sized memory pool*/

 } T_RMPF ;

(4)Time Management Functions

Cycle Handlerstatus Packet form of

 typedef struct t_rcyc {

 STAT cycstat ; /*Operation status of Cycle Handler */

 RELTIM lefttim ; /* Time till next starting-up of Cycle Handler*/

 } T_RCYC ;

Chapter 7 Appendix

169
Copyright © eForce Co.,Ltd. All Rights Reserved

(5)System State Management Functions

Packet form of System status

 typedef struct t_rsys {

 /* No field */

 } T_RSYS ;

(6)System Configuration Management Functions

Packet form of Configuration information

 typedef struct t_rcfg {

 UH tick Cycle time of Time Tick

 UH tskpri_max Upper limit of Task Priority Level

 UH id_max Maximum ID number

 } T_RCFG ;

Version information Packet form of

 typedef struct t_rver {

 UH maker ; /* Maker code of kernel */

 UH prid ; /* Identified number of kernel */

 UH spver ; /*Version number of ITRON specification*/

 UH prver ; /*Version number of kernel */

 UH prno[4] ; /*Management information of kernel product*/

 } T_RVER ;

μC3/Compact Users Guide

170
Copyright © eForce Co.,Ltd. All Rights Reserved

7．3 Constant and macro

(1)General

NULL 0 Invalid pointer

TRUE 1 True

FALSE 0 False

E_OK 0 Successful completion

(2)Specify time-out

TMO_POL 0 Polling

TMO_FEVR -1 Permanent wait

TMO_NBLK -2 Non-blocking

(3)Operation mode of Service call

TWF_ANDW 0x00 AND waiting of Eventflag

TWF_ORW 0x01 OR waiting of Eventflag

(4)Object status

TTS_RUN 0x01 Execution status

TTS_RDY 0x02 possible execution status

TTS_WAI 0x04 Waiting status

TTS_SUS 0x08 Compulsive waiting status

TTS_WAS 0x0c Double waiting status

TTS_DMT 0x10 Dormant status

TTW_SLP 0x0001 Get-up waiting status

TTW_DLY 0x0002 Time-passing waiting status

TTW_SEM 0x0004 Status of waiting for acquiring Semaphore resource

TTW_FLG 0x0008 Waiting status of Eventflag

TTW_SDTQ 0x0010 Waiting status of transmission to Data Queues

TTW_RDTQ 0x0020 Waiting status of receiving from Data Queues

TTW_MBX 0x0040 Waiting status of receiving from Mailbox

TTW_MPF 0x2000 Acquisition waiting status of Fixed-Sized memory block

TCYC_STP 0x00 Cycle Handler is in non-operation

TCYC_STA 0x01 Cycle Handler is in operation

(5)Other constants

Chapter 7 Appendix

171
Copyright © eForce Co.,Ltd. All Rights Reserved

TSK_SELF 0 Specify local Task

TSK_NONE 0 No appropriateTask

TPRI_SELF 0 Specify Base Priority Level of local Task

TPRI_INI 0 Specify Priority Level when starting up Task

μC3/Compact Users Guide

172
Copyright © eForce Co.,Ltd. All Rights Reserved

7．4 Composition constant and macro

(1)Scope of Priority Level

TMIN_TPRI Minimum value of TaskPriority Level(＝1)

(2)Version information

TKERNEL_MAKER Maker code of kernel

TKERNEL_PRID Identified number of kernel

TKERNEL_SPVER Version number of ITRON specification

TKERNEL_PRVER Version number of kernel

(3)The maximum value of queuing/frequency of nest

TMAX_ACTCNT Maximum value of Task’s Start-up request queuing number

TMAX_WUPCNT Maximum value of Task’s get-up request queuing number

(4)Bit number of bit pattern

TBIT_FLGPTN Bit number of Eventflag

(5)Others

TMAX_MAXSEM Maximum value of Semaphore’s maximum resource

number

Chapter 7 Appendix

173
Copyright © eForce Co.,Ltd. All Rights Reserved

7．5 List of Error Code

E_SYS -5 0xFFFFFFFB SystemError

E_NOSPT -9 0xFFFFFFF7 Non-support function

E_RSFN -10 0xFFFFFFF6 Reservation function code

E_RSATR -11 0xFFFFFFF5 Reservation Attribute

E_PAR -17 0xFFFFFFEF ParameterError

E_ID -18 0xFFFFFFEE Incorrect ID number

E_CTX -25 0xFFFFFFE7 ContextError

E_MACV -26 0xFFFFFFE6 Memory access violation

E_OACV -27 0xFFFFFFE5 Object access violation

E_ILUSE -28 0xFFFFFFE4 Incorrect use of Service call

E_NOMEM -33 0xFFFFFFDF Memory shortage

E_NOID -34 0xFFFFFFDE ID number shortage

E_OBJ -41 0xFFFFFFD7 Object status error

E_NOEXS -42 0xFFFFFFD6 Object which has not been created

E_QOVR -43 0xFFFFFFD5 Queuing overflow

E_RLWAI -49 0xFFFFFFCF Compulsive release of waiting status

E_TMOUT -50 0xFFFFFFCE Polling failure or time-out

E_DLT -51 0xFFFFFFCD Delete status of waiting Object

E_CLS -52 0xFFFFFFCC Change status of waiting Object

E_WBLK -57 0xFFFFFFC7 Non-blocking reception

E_BOVR -58 0xFFFFFFC6 Buffer overflow

μC3/Compact Users Guide

174
Copyright © eForce Co.,Ltd. All Rights Reserved

7．6 List of System Call

System Call name Task
Time Event

Handler
Interrupt Service

Routine

A) Task Management Functions

act_tsk／iact_tsk ○ ○ ○

can_act ○ ○ ×

sta_tsk ○ ○ ○

ext_tsk ○ × ×

ter_tsk ○ × ×

chg_pri ○ ○ ×

get_pri ○ ○ ×

ref_tsk ○ ○ ×

ref_tst ○ ○ ×

B) Task Dependent Synchronization Functions

slp_tsk ○ × ×

tslp_tsk ○ × ×

wup_tsk／iwup_tsk ○ ○ ○

can_wup ○ ○ ×

rel_wai／irel_wai ○ ○ ○

dly_tsk ○ × ×

C) Synchronization and Communication Functions(Semaphores)

sig_sem／isig_sem ○ ○ ○

wai_sem ○ × ×

pol_sem ○ ○ ×

twai_sem ○ × ×

ref_sem ○ ○ ×

D) Synchronization and Communication Functions(Eventflags)

set_flg／iset_flg ○ ○ ○

clr_flg ○ ○ ×

wai_flg ○ × ×

pol_flg ○ ○ ×

twai_flg ○ × ×

ref_flg ○ ○ ×

Chapter 7 Appendix

175
Copyright © eForce Co.,Ltd. All Rights Reserved

System Call name Task
Time Event

Handler
Interrupt Service

Routine

E) Synchronization and Communication Functions(Data Queues)

snd_dtq ○ × ×

psnd_dtq／ipsnd_dtq ○ ○ ○

tsnd_dtq ○ × ×

fsnd_dtq／ifsnd_dtq ○ ○ ○

rcv_dtq ○ ○ ×

prcv_dtq ○ ○ ×

trcv_dtq ○ × ×

ref_dtq ○ ○ ×

F) Synchronization and Communication Functions(Mailboxes)

snd_mbx ○ ○ ×

rcv_mbx ○ × ×

prcv_mbx ○ ○ ×

trcv_mbx ○ × ×

ref_mbx ○ ○ ×

G) Memory Pool Management Functions (Fixed-Sized Memory Pools)

get_mpf ○ × ×

pget_mpf ○ ○ ×

tget_mpf ○ × ×

rel_mpf ○ ○ ×

ref_mpf ○ ○ ×

H) Time Management Functions(System Time Management)

set_tim ○ ○ ×

get_tim ○ ○ ×

isig_tim × × ○

I)Time Management Functions (Cycle Handlers)

sta_cyc ○ ○ ×

stp_cyc ○ ○ ×

ref_cyc ○ ○ ×

μC3/Compact Users Guide

176
Copyright © eForce Co.,Ltd. All Rights Reserved

System Call name Task
Time Event

Handler
Interrupt Service

Routine

J) System State Management Functions

rot_rdq／irot_rdq ○ ○ ○

get_tid／iget_tid ○ ○ ○

loc_cpu／iloc_cpu ○ ○ ○

unl_cpu／iunl_cpu ○ ○ ○

dis_dsp ○ × ×

ena_dsp ○ × ×

sns_ctx ○ ○ ○

sns_loc ○ ○ ○

sns_dsp ○ ○ ○

sns_dpn ○ ○ ○

ref_sys ○ ○ ×

K) Interrupt Management Functions

chg_ims ○ ○ ○

get_ims ○ ○ ○

L) System Configuration Management Functions

ref_cfg ○ ○ ○

ref_ver ○ ○ ○

○：Possible use

×：Impossible use

Index

177
Copyright © eForce Co.,Ltd. All Rights Reserved

Index

Ａ

act_tsk ... 94

activation request queuing 21

Ｂ

Base Priority Level ... 11

Blocked state ... 14

Ｃ

can_act .. 96

can_wup .. 107

chg_ims ... 151

chg_pri ... 100

clr_flg ... 115

concurrent processing ... 10

Configurator ... 8, 20

Context .. 10

CPU Lock Status ... 16

CPU Unlock Status .. 16

ctr_com .. 158

Current Priority Level ... 11

Cyclic Handlers.. 136

Cyclic Handlers.. 28

Ｄ

Data Queues ... 25

Data Queues ... 119

Data type ... 165

dis_dsp .. 144

Dispatcher ... 10

Dispatching Disabled State 17

Dispatch ... 10

dly_tsk .. 108

DORMANT state .. 14

Ｅ

ena_dsp ... 145

Eventflags .. 114

Eventflags .. 24

ext_tsk ... 98

Ｆ

Fixed-Sized Memory Pools 27, 129

fsnd_dtq ... 120

Ｇ

get_ims .. 152

get_mpf .. 129

get_pri .. 100

get_tid .. 140

get_tim ... 134

getc_com ... 162

gets_com ... 163

Ｉ

iact_tsk ... 94

ID Number ... 10

Idle status .. 17

ifsnd_dtq .. 120

iget_tid ... 140

iloc_cpu.. 142

μC3/Compact Users Guide

178
Copyright © eForce Co.,Ltd. All Rights Reserved

ini_com ...156

Interrupt Management Functions 31, 151

interrupt mask ..152

interrupt service routime31

interrupt service routine ..10

invoking task ..10

ipsnd_dtq ... 119

irel_wai ...108

irot_rdq ...140

iset_flg .. 114

isig_sem ... 110

isig_tim ...135

iunl_cpu ..143

iwup_tsk ...106

Ｌ

loc_cpu ...142

Ｍ

Mailboxes ... 26, 125

Memory Pool Management Functions 27, 129

Ｎ

Non-Task Context ..16

Ｏ

Object ...10

Ｐ

pget_mpf ..130

pol_flg .. 116

pol_sem ... 112

prcv_dtq ... 122

prcv_mbx ... 127

precedence.. 15

Preemptive .. 11

Priority level ... 11

Priority order .. 11

Process Unit .. 16

psnd_dtq.. 119

putc_com ... 160

puts_com ... 161

Ｑ

Queue ... 12

Queuing ... 12

Ｒ

rcv_dtq ... 122

rcv_mbx ... 127

READY state ... 14

ref_cfg ... 153

ref_com ... 164

ref_cyc ... 138

ref_dtq ... 123

ref_flg .. 117

ref_mbx ... 128

ref_mpf .. 132

ref_sem ... 113

ref_sys ... 150

ref_tsk .. 102

ref_tst .. 104

ref_ver ... 154

rel_mpf .. 131

rel_wai ... 108

Index

179
Copyright © eForce Co.,Ltd. All Rights Reserved

Restricted Tasks .. 11

Restricted Task .. 19

rot_rdq ... 140

runnable state .. 13

RUNNING state ... 14

Ｓ

Scheduler .. 10

Scheduling Rules .. 15

Scheduling ... 10

Semaphore .. 24

Semaphores .. 110

Service Call ... 11

set_flg .. 114

set_tim ... 133

Shared Stack ... 11, 19

sig_sem ... 110

sleeping state .. 23

slp_tsk ... 105

snd_dtq .. 119

snd_mbx .. 125

sns_ctx .. 146

sns_dpn ... 148

sns_dsp ... 148

sns_loc .. 146

sta_cyc .. 136

sta_tsk ... 97

Stack Release ... 19

STACK-WAITING .. 14

standard COM port driver 155

start code ... 21

state transitions ... 13

stp_cyc .. 137

Synchronization and Communication Functions 110

System Call ... 11

System Configuration Management Functions .. 153

System Configuration Management Functions 32

System State Management Functions 30, 140

System Time Management 133

System Time Management 28

system time.. 11

Ｔ

Task Context .. 16

Task Dependent Synchronization Functions 105

Task Management Functions 94

Task Management Functions 21

Task State during Dispatch Pending State 18

Task States .. 13

Task ... 10

ter_tsk .. 99

tget_pmf ... 130

time event handler ... 28

Time Event Handler ... 16

Time Management Functions 28, 133

Time Tick ... 11

trcv_dtq .. 122

trcv_mbx .. 127

tslp_tsk ... 105

tsnd_dtq ... 119

twai_flg ... 116

twai_sem ... 112

Ｕ

unl_cpu .. 142

Ｗ

wai_flg .. 116

μC3/Compact Users Guide

180
Copyright © eForce Co.,Ltd. All Rights Reserved

wai_sem ... 112

WAITING state ...14

wakeup request count ... 21

wup_tsk ... 106

µC3/Compact Users Guide

eForce Co., Ltd. http://www.eforce.co.jp/

Contact us : info@eforce.co.jpCopyright (C) 2008-2012 eForce Co.,Ltd.

All Rights Reserved.

2008 May 1
st
 Edition

2008 August 2
nd

 Edition
2009 March 3

rd
 Edition

2010 June 4
th
 Edition

2012 October 5
th
 Edition

	Introduction
	Table of Content
	Chapter 1　What is µC3/Compact?
	1．1　　Features
	1．2　　Position in specification of µITRON
	1．3　　Development process

	Chapter 2　 Basic concept of µC3/Compact
	2．2　　Glossary of basic terms
	2．1．1　　Task
	2．1．2　　Dispatch and Scheduling
	2．1．3　　Context
	2．1．4　　Object and ID number
	2．1．5　　Service Call and System Call
	2．1．6　　Priority order and priority level
	2．1．7　　Restricted Tasks
	2．1．8　　Shared Stack
	2．1．9　　Preemptive
	2．1．10　Time Tick
	2．1．11　Queuing
	2．1．12　Queue

	2．2　　Task States and Scheduling Rule
	2．2．１　　Task States
	2．2．2　　Scheduling Rules

	CHAPTER 3　Function Outline of µC3/Compact
	3．1　　Context and System status
	3．1．1　　Process Unit and Context
	3．1．2　　Task Context and Non-Task Context
	3．1．3　　CPU Lock Status
	3．1．4　　Dispatching Disabled State
	3．1．5　　Idle status
	3．1．6　　Task State during Dispatch Pending State

	3．2　　Shared Stack
	3．2．1　　Method of using attribute of Restricted Task
	3．2．2　　Method of using Stack Release Waiting status

	3．3　　Configurator
	3．3．1　　Configuration information of common kernel
	3．3．2　　Configuration Information of Kernel Objects
	3．3．3　　Generated source code

	3．4　　Task Management Functions
	3．5　　Task Dependent Synchronous Functions
	3．6　　Synchronization and Communication Functions
	3．6．1　　Semaphore
	3．6．2　　Eventflags
	3．6．3　　Data Queues
	3．6．4　　Mailboxes

	3．7　　Memory Pool Management Functions
	3．7．1　　Fixed-Sized Memory Pools

	3．8　　Time Management Functions
	3．8．1　　System Time Management
	3．8．2　　Cyclic Handlers

	3．9　　System State Management Functions
	3．10　Interrupt Management Functions
	3．11　System Configuration Management Functions

	CHAPTER 4　Usage of Configurator
	4．1　　Operation of the configurator : "Ver.2.x configurator"
	4．1．1　　Starting up Configurator
	A．In case of creating a new project
	B．In case of opening an existing project
	C．Main screen

	4．1．2　　Set-up kernel
	4．1．2．1　　Configuration of common kernel
	Add header file
	Idle function
	Number of Task Priority Level
	Tick Time
	System Stack Size

	4．1．2．2　　Configuration of Task
	ID Symbol
	Function name
	Initial value of Priority Level
	Extension information
	TA_HLNG/TA_ASM
	TA_ACT
	TA_RSTR
	Shared stack

	4．1．2．3　　Configuration of Semaphore
	ID Symbol
	Initial value of resource number
	Maximum resource number
	TA_TFIFO/TA_TPRI

	4．1．2．4　　Configuration of Eventflag
	ID Symbol
	Initial value of bit pattern
	TA_TFIFO/TA_TPRI
	TA_WSGL/TA_WMUL

	4．1．2．5　　Configuration of Data Queues
	ID Symbol
	Number of data Spacify number of Data Queues (number of data).
	TA_TFIFO/TA_TPRI

	4．1．2．6　　Configuration of Mailbox
	ID Symbol
	TA_TFIFO/TA_TPRI
	TA_MFIFO/TA_MPRI

	4．1．2．7　　Configuration of Fixed-Sized memory pool
	ID Symbol
	Number of memory block
	Size of memory block
	TA_TFIFO/TA_TPRI

	4．1．2．8　　Configuration of Cycle Handler
	ID Symbol
	Function name
	Extension information
	Starting-up cycle
	TA_HLNG/TA_ASM
	TA_STA
	TA_PHS

	4．1．2．9　　Configuration of Interrupt Service Routine
	Interrupt number
	Function name
	Extension number

	4．1．2．10　Configuration of Shared stack
	ID Symbol
	Size of Stack
	Deletion

	4．1．3　　Saving project file
	4．1．4　　Generate source
	4．1．5　　Error check when creating source
	4．1．5．1　　Total ID

	4．2　　Operation of the configurator : Current Version
	4．2．1　　Starting up Configurator
	A．In case of creating a new project
	B．In case of opening an existing project
	C．Main screen

	4．2．2　　Set-up kernel
	4．2．2．1　　Configuration of general kernel
	Menu Screen
	Configuration Screen
	Kernel Mask Level
	Maximum task priority
	Tick Time
	User Initial function
	User Idle function
	User header file
	Use FPU *
	Time Event Handler (CSTACK)
	System Handler (HSTACK)
	Interrupt Service Routine (ISTACK) *

	4．2．2．2　　Configuration of Task
	Menu Screen
	Configuration Screen
	Tasks
	Add
	Screen to add a new task is displayed.
	Task Set Screen
	ID Symbol
	Function name
	Initial Priority
	Extended information
	Ready State (TA_ACT)
	Restricted task (TA_RSTR)
	User mode (TA_USR) *
	High-Level (TA_HLNG) / Assembly (TA_ASM)
	Use Local Stack / Use Shared stack

	4．2．2．3　　Configuration of Semaphore
	Menu Screen
	Configuration Screen
	Semaphores
	Add
	Screen to add a new Semaphore is displayed.
	Semaphore Set Screen
	ID Symbol
	Initial resource count
	Maximum resource number
	FIFO order (TA_TFIFO) / Task priority order (TA_TPRI)

	4．2．2．4　　Configuration of Event Flag
	Menu Screen
	Configuration Screen
	Event Flags
	Add
	Screen to add a new Event Flag is displayed.
	Event Flag Set Screen
	ID Symbol
	Initial bit pattern (hex)
	FIFO Order (TA_TFIFO) / Task priority order (TA_TPRI)
	No (TA_WSGL) / Yes (TA_WMUL)

	4．2．2．5　　Configuration of Data Queues
	Menu Screen
	Configuration Screen
	Event Flags
	Add
	Screen to add a new Data Queue is displayed.
	Data Queue Set Screen
	ID Symbol
	Queue Depth Spacify number of Data Queues (number of data).
	FIFO Order (TA_TFIFO) / Task priority order (TA_TPRI)

	4．1．2．6　　Configuration of Mailbox
	Menu Screen
	Configuration Screen
	Mailboxes
	Add
	Screen to add a new Mailbox is displayed.
	Mailbox Set Screen
	ID Symbol
	FIFO order (TA_TFIFO) / Task priority order (TA_TPRI)
	FIFO order (TA_MFIFO) / Message priority order (TA_MPRI)

	4．2．2．7　　Configuration of Fixed-Sized Memory Pool
	Menu Screen
	Configuration Screen
	Fixed-Sized Memory Pools
	Add
	Screen to add a new Fixed-Sized Memory Pool is displayed.
	Fixed-Sized Memory Pool Set Screen
	ID Symbol
	Memory Blocks
	FIFO order (TA_TFIFO) / Task priority order (TA_TPRI)
	Specify size (byte)
	Other

	4．2．2．8　　Configuration of Cycle Handler
	Menu Screen
	Configuration Screen
	Cyclic Handlers
	Add
	Screen to add a new Cyclic Handler is displayed.
	Cyclic Handler Set Screen
	ID Symbol
	Function name
	Extended information
	Activation Cycle
	High-Level (TA_HLNG) / Assembly (TA_ASM)
	Operational State (TA_STA)
	Preserve activation phare (TA_PHS)
	User mode (TA_USR) *

	4．2．2．9　　Configuration of Interrupt Service Routine
	Menu Screen
	Configuration Screen
	Interrupt Service Routines
	Add
	Screen to add a new Interrupt Service Routine is displayed.
	Interrupt Service Routine Set Screen
	Interrupt number
	Function name
	Extended Information
	User mode (TA_USR) *

	4．2．2．10　Configuration of Shared stack
	Menu Screen
	Configuration Screen
	Shared Stacks
	Add
	Screen to add a new Shared Stack is displayed.
	Shared Stack Set Screen
	ID Symbol
	Stack Size
	Deletion

	4．2．2．11　　Configuration of Non-Kernel ISR (Interrupt Service Routine)
	Menu Screen
	Configuration Screen
	Non-Kernel ISRs
	Add
	Screen to add a new Non-Kernel ISR is displayed.
	Non-Kernel ISR Set Screen
	Interrupt number
	Function name

	4．2．3　　Saving project file
	4．2．4　　Generate source
	4．2．5　　Error check when creating source
	4．1．5．1　　Total ID

	CHAPTER 5　Explanation of System Call
	5．1　　Task Management Functions
	5．2　　Task Dependent Synchronization Functions
	5．3　　Synchronization and Communication Functions
	5．3．1　　Semaphores
	5．3．2　　 Eventflags
	5．3．3　　Data Queues
	5．3．4　　Mailboxes

	5．4　　Memory Pool Management Functions
	5．4．1　　Fixed-Sized Memory Pools

	5．5　　Time Management Functions
	5．5．1　　System Time Management
	5．5．2　　Cyclic Handlers

	5．6　　System State Management Functions
	5．7　　Interrupt Management Functions
	5．8　　System Configuration Management Functions

	CHAPTER 6　Explanation of standard COM port driver
	6．1　　Outline of standard COM port driver
	6．2　　Service call of standard COM port driver

	CHAPTER 7　Appendix
	7．1　　Data type
	7．2　　Form of packet
	7．3　　Constant and macro
	7．4　　Composition constant and macro
	7．5　　List of Error Code
	7．6　　List of System Call
	Index

